Francesco Enrichi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4044367/publications.pdf

Version: 2024-02-01

104 papers 1,995 citations

218592 26 h-index 302012 39 g-index

105 all docs

 $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 2634 citing authors

#	Article	IF	CITATIONS
1	Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renewable and Sustainable Energy Reviews, 2018, 82, 2433-2439.	8.2	134
2	Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Nanoscale, 2014, 6, 7004-7011.	2.8	81
3	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Catalysis. ACS Applied Materials & Design of Carbon Dots for Catalysis. ACS Applied Materials & Design of Catalysis. ACS Applied Materials & Design	4.0	79
4	Room-temperature 1.54 \hat{l} 4m photoluminescence from Er-doped Si-rich silica layers obtained by reactive magnetron sputtering. Journal of Applied Physics, 2003, 94, 3869-3874.	1.1	59
5	Silver-sensitized erbium-doped ion-exchanged sol–gel waveguides. Applied Physics A: Materials Science and Processing, 2005, 80, 557-563.	1.1	57
6	Tb3+/Yb3+ codoped silica–hafnia glass and glass–ceramic waveguides to improve the efficiency of photovoltaic solar cells. Optical Materials, 2016, 52, 62-68.	1.7	53
7	Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells. Journal of Luminescence, 2018, 193, 44-50.	1.5	49
8	Synthesis and optical properties of sub-micron sized rare earth-doped zirconia particles. Optical Materials, 2011, 33, 1745-1752.	1.7	46
9	Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	42
10	Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles. Journal of Nanoparticle Research, 2011, 13, 4349-4356.	0.8	41
11	Photoluminescence properties of YAG:Ce3+,Pr3+ phosphors synthesized via the Pechini method for white LEDs. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	40
12	Monitoring the <i>t â†' m</i> Martensitic Phase Transformation by Photoluminescence Emission in <scp><scp>Eu</scp></scp> ³⁺ â€Doped Zirconia Powders. Journal of the American Ceramic Society, 2013, 96, 2628-2635.	1.9	40
13	Energy transfer in color-tunable water-dispersible Tb–Eu codoped CaF ₂ nanocrystals. Journal of Materials Chemistry C, 2016, 4, 1906-1913.	2.7	40
14	Modifications in silver-doped silicate glasses induced by ns laser beams. Applied Surface Science, 2011, 257, 5434-5438.	3.1	39
15	Green-emitting manganese (II) complexes with phosphoramide and phenylphosphonic diamide ligands. Inorganic Chemistry Communication, 2018, 92, 145-150.	1.8	38
16	Evidence of energy transfer in an aluminosilicate glass codoped with Si nanoaggregates and Er3+ions. Journal of Applied Physics, 2004, 96, 3925-3932.	1.1	37
17	Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	36
18	pH-activated doxorubicin release from polyelectrolyte complex layer coated mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2013, 180, 86-91.	2.2	36

#	Article	IF	CITATIONS
19	Ag+â†"Na+ ion exchanged silicate glasses for solar cells covering: Down-shifting properties. Ceramics International, 2015, 41, 7221-7226.	2.3	32
20	Combustion synthesis and photoluminescence of Eu3+ doped LaAlO3 nanophosphors. Optical Materials, 2012, 34, 1742-1746.	1.7	31
21	Preparation of photoluminescent PMMA doped with tris(pyrazol-1-yl)borate lanthanide complexes. Journal of Luminescence, 2012, 132, 2378-2384.	1.5	31
22	Photoluminescence studies on europium-based scorpionate-complex. Inorganic Chemistry Communication, 2011, 14, 1762-1766.	1.8	29
23	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
24	Structural and photoluminescence properties of ZrO2:Eu3+ @ SiO2 nanophosphors as a function of annealing temperature. Journal of Luminescence, 2010, 130, 2429-2436.	1.5	28
25	Silver doping of silica-hafnia waveguides containing Tb 3+ /Yb 3+ rare earths for downconversion in PV solar cells. Optical Materials, 2016, 60, 264-269.	1.7	28
26	Signal enhancement in DNA microarray using dye doped silica nanoparticles: Application to Human Papilloma Virus (HPV) detection. Biosensors and Bioelectronics, 2011, 26, 2761-2765.	5.3	27
27	Combustion synthesis and photoluminescence of Tb3+ doped LaAlO3 nanophosphors. Optical Materials, 2013, 35, 1184-1188.	1.7	27
28	Structural and photophysical properties of rare-earth complexes encapsulated into surface modified mesoporous silica nanoparticles. Dalton Transactions, 2014, 43, 16183-16196.	1.6	27
29	Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica. Journal of Luminescence, 2018, 197, 104-111.	1.5	27
30	Mercaptosilane-Passivated CulnS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials, 2019, 2, 2426-2436.	2.4	26
31	Near Infrared Emission from Monomodal and Bimodal PbS Nanocrystal Superlattices. Journal of Physical Chemistry C, 2012, 116, 6143-6152.	1.5	25
32	Stepwise dansyl grafting on the kaolinite interlayer surface. Journal of Colloid and Interface Science, 2012, 375, 112-117.	5.0	25
33	Unexpected optical activity of cerium in Y ₂ O ₃ :Ce ³⁺ , Yb ³⁺ , Er ³⁺ up and down-conversion system. Dalton Transactions, 2013, 42, 16837-16845.	1.6	25
34	Investigation on the Luminescence Properties of InMO $<$ sub $>$ 4 $<$ /sub $>$ (M = V $<$ sup $>$ 5+ $<$ /sup $>$,) Tj ETQq0 0 0 rgBT general Earth lons. ACS Omega, 2020, 5, 2148-2158.	Overlock 1.6	10 Tf 50 147 24
35	Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1925-1931.	0.8	23
36	Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology, 2012, 27, 085009.	1.0	23

#	Article	IF	Citations
37	<i>Luminescent Aminoâ€functionalized or Erbiumâ€doped Silica Spheres for Biological Applications</i> Annals of the New York Academy of Sciences, 2008, 1130, 262-266.	1.8	22
38	Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling. Optical Materials, 2010, 32, 1652-1658.	1.7	22
39	Phosphonium-based tetrakis dibenzoylmethane Eu(<scp>iii</scp>) and Sm(<scp>iii</scp>) complexes: synthesis, crystal structure and photoluminescence properties in a weakly coordinating phosphonium ionic liquid. RSC Advances, 2015, 5, 60898-60907.	1.7	22
40	Emerging carbon-based nanosensor devices: structures, functions and applications. Advances in Manufacturing, 2015, 3, 63-72.	3.2	20
41	Tuning ZnO nanorods photoluminescence through atmospheric plasma treatments. APL Materials, 2019, 7, .	2.2	20
42	Acid Synthesis of Luminescent Amine-functionalized or Erbium-doped Silica Spheres for Biological Applications. Journal of Fluorescence, 2008, 18, 507-511.	1.3	19
43	Comparison between glass and glass-ceramic silica-hafnia matrices on the down-conversion efficiency of Tb3+/Yb3+ rare earth ions. Optical Materials, 2019, 87, 102-106.	1.7	19
44	Investigation on the effect of Tb(dbm)3phen on the luminescent properties of Eu(dbm)3phen-containing mesoporous silica nanoparticles. Materials Chemistry and Physics, 2013, 142, 445-452.	2.0	18
45	Ultra-small dye-doped silica nanoparticles via modified sol-gel technique. Journal of Nanoparticle Research, 2018, 20, 117.	0.8	18
46	Sensitizing effects in Ag-Er codoped glasses for optical amplification., 2004, 5451, 311.		17
47	Structural and luminescence properties of europium(III)-doped zirconium carbonates and silica-supported Eu3+-doped zirconium carbonate nanoparticles. Journal of Nanoparticle Research, 2010, 12, 993-1002.	0.8	15
48	Group 3 and lanthanide triflate-complexes with [N,N,O]-donor ligands: synthesis, characterization, and cytotoxic activity. Journal of Coordination Chemistry, 2012, 65, 3903-3916.	0.8	15
49	Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study. Journal of Luminescence, 2014, 145, 963-969.	1.5	15
50	Towards controllable optical properties of silicon based nanoparticles for applications in opto-electronics. Optical Materials, 2005, 27, 1014-1019.	1.7	14
51	Wedge nanostructures for plasmonic nanofocusing. Optics Express, 2012, 20, 16224.	1.7	14
52	Ag nanoaggregates as efficient broadband sensitizers for Tb3+ ions in silica-zirconia ion-exchanged sol-gel glasses and glass-ceramics. Optical Materials, 2018, 84, 668-674.	1.7	14
53	Study of Eu3+ and Tm3+ substitution effects in sol–gel fabricated calcium hydroxyapatite. Journal of Sol-Gel Science and Technology, 2017, 81, 261-267.	1.1	13
54	Luminescent copper(I) coordination polymer with 1-methyl-1H-benzotriazole, iodide and acetonitrile as ligands. Inorganic Chemistry Communication, 2019, 102, 141-146.	1.8	13

#	Article	IF	CITATIONS
55	Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions. Optical Materials, 2005, 27, 904-909.	1.7	12
56	Dual red-NIR luminescent Eu Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing. Materials Science and Engineering C, 2019, 105, 110057.	3.8	12
57	A simple approach for upconversion determination using low excitation power: the photoluminescence analysis of an Er-doped aluminosilicate glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 20-24.	1.7	11
58	Combustion synthesis and photoluminescence properties of LaAlO3 nanophosphors doped with Yb3+ions. Journal of Luminescence, 2014, 153, 408-411.	1.5	11
59	Luminescent dansyl-based ionic liquids from amino acids and methylcarbonate onium salt precursors: synthesis and photobehaviour. Green Chemistry, 2015, 17, 538-550.	4.6	11
60	Ag-Sensitized Yb3+ Emission in Glass-Ceramics. Micromachines, 2018, 9, 380.	1.4	10
61	Luminescent lanthanide complexes with phosphoramide and arylphosphonic diamide ligands. Chemical Papers, 2020, 74, 3693-3704.	1.0	10
62	Ag-Sensitized NIR-Emitting Yb3+-Doped Glass-Ceramics. Applied Sciences (Switzerland), 2020, 10, 2184.	1.3	10
63	Time dependence and excitation spectra of the photoluminescence emission at 1.54μm in Si-nanocluster and Er co-doped silica. Optical Materials, 2005, 27, 884-889.	1.7	9
64	In situ synthesis of $Eu(Tp)3$ complex inside the pores of mesoporous silica nanoparticles. Journal of Luminescence, 2013, 142, 28-34.	1.5	9
65	Solar cells' evolution and perspectives: a short review. , 2020, , 1-32.		9
66	Ag-sensitized Tb3+/Yb3+ codoped silica-zirconia glasses and glass-ceramics: Systematic and detailed investigation of the broadband energy-transfer and downconversion processes. Ceramics International, 2021, 47, 17939-17949.	2.3	9
67	Probe of the Si nanoclusters to Er3+ energy transfer dynamics by double-pulse excitation. Applied Physics Letters, 2005, 87, 061109.	1.5	8
68	Synthesis and characterization of monodisperse Eu-doped luminescent silica nanospheres for biological applications. , 2008, , .		8
69	Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes. Chemical Papers, 2017, 71, 149-159.	1.0	8
70	Impact of Oxalate Ligand in Co-Precipitation Route on Morphological Properties and Phase Constitution of Undoped and Rh-Doped BaTiO3 Nanoparticles. Nanomaterials, 2019, 9, 1697.	1.9	8
71	Yttrium and lanthanide complexes of \hat{l}^2 -dialdehydes: synthesis, characterization, luminescence and electrochemistry of coordination compounds with the conjugate base of bromomalonaldehyde. Dalton Transactions, 2014, 43, 9303.	1.6	7
72	Ultraviolet to near infrared down-conversion in CaF2:Nd3+/Yb3+/Li+ phosphors. Journal of Luminescence, 2021, 238, 118241.	1.5	7

#	Article	IF	CITATIONS
73	Combustion synthesis and spectroscopic charaterisation of LaAlO3 nanophosphors doped Er3+ ions. Ceramics International, 2013, 39, 9613-9617.	2.3	6
74	Yttrium and lanthanide complexes of β-dialdehydes: synthesis, characterization and luminescence of coordination compounds with the conjugate base of nitromalonaldehyde. Dalton Transactions, 2014, 43, 10120.	1.6	6
75	Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112664.	2.5	6
76	Photoluminescence and photoluminescence excitation studies in 80MeV Ni ion irradiated MOCVD grown GaN. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1925-1928.	0.6	5
77	State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics. Advances in Manufacturing, 2017, 5, 105-119.	3.2	5
78	Rare-earth doped glasses and light managing in solar cells. Journal of Physics: Conference Series, 2019, 1221, 012028.	0.3	5
79	Glass ceramics for frequency conversion. , 2020, , 391-414.		5
80	Luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres as efficient labels in DNA microarrays. Proceedings of SPIE, 2009, , .	0.8	4
81	The conjugate base of methyl 3-oxobutanoate as an antenna ligand in visible-emitting photoluminescent lanthanide complexes. RSC Advances, 2016, 6, 32727-32739.	1.7	4
82	Deposition of silica protected luminescent layers of Eu:GdVO4 nanoparticles assisted by atmospheric pressure plasma jet. Thin Solid Films, 2016, 598, 88-94.	0.8	4
83	Assessment of electrical and optical properties of heavily Fe-implanted semi-insulating InP. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 202-205.	1.7	3
84	Study of the Si-nanocluster to Er3+ energy transfer dynamics using a double-pulse experiment. Optical Materials, 2006, 28, 815-819.	1.7	3
85	Enhancing the Sensitivity of DNA Microarray Using Dye-Doped Silica Nanoparticles: Detection of Human Papilloma Virus. , 2010, , .		3
86	Incorporation of Eu–Tb codoped nanophosphors in silica-based coatings assisted by atmospheric pressure plasma jet technology. Thin Solid Films, 2015, 578, 38-44.	0.8	3
87	Luminescent europium(<scp>iii</scp>) complexes containing an electron rich 1,2,3-triazolyl-pyridyl ligand. New Journal of Chemistry, 2018, 42, 11064-11072. Optical properties of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.4</td><td>3</td></mml:math>	1.4	3
88	altimg="si1.svg"> <mml:mrow><mml:mi mathvariant="bold">T</mml:mi><mml:msup><mml:mi mathvariant="bold">T</mml:mi><mml:msup><mml:mi mathvariant="bold">b</mml:mi><mml:mrow>3<mml:mo>+</mml:mo>Y<mml:msup><mml:mi< td=""><td>nl:msup><</td><td>mgnl:mo</td></mml:mi<></mml:msup></mml:mrow></mml:msup></mml:msup></mml:mrow>	nl:msup><	mgnl:mo
89	mathvariant="bold">b <mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow> Optical and structural investigation on the energy transfer in a multicomponent glass co-doped with Si nanoaggregates and Er3+ ions. Materials Research Society Symposia Proceedings, 2004, 817, 49.	nl:msup>< 0.1	/mml:mrow>
90	Rare earths and metal nanoparticles in silicate glass-ceramics to improve the efficiency of photovoltaic solar cells. , 2014 , , .		2

#	ARTICLE	IF	Citations
91	Mononuclear and heterodinuclear phenanthrolinedione complexes of d- and f-block elements \hat{e}_i . Chemical Papers, 2016, 70, .	1.0	2
92	Light management in solar cells: Recent advances. , 2017, , .		2
93	The conjugate base of malonaldehyde as antenna-ligand towards trivalent europium and terbium ions. Chemical Papers, 2018, 72, 809-819.	1.0	2
94	Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid. Applied Sciences (Switzerland), 2021, 11, 3830.	1.3	2
95	Rare Earth Ions Doped Down-conversion Materials for Third Generation Photovoltaic Solar Cells. , 2017, , .		1
96	Role of Ag multimers as broadband sensitizers in Tb3+/Yb3+ co-doped glass-ceramics. , 2018, , .		1
97	Evaluation of double focal plane exposure technique for 248-nm and 193-nm lithography for semidense trenches and contacts., 2002, 4691, 1544.		0
98	Luminescence Properties of a Multi-Component Glass Co-Implanted with Si and Er. Solid State Phenomena, 2004, 99-100, 37-40.	0.3	0
99	<title>Investigation and application of size-dependent properties of silicon-based nanoparticles produced by laser pyrolysis</title> ., 2005, , .		O
100	Examples of the Use of Optical Spectroscopy to Detect Damage of Thermal Barrier Coatings During Cyclic Oxidation. , 2012 , , .		0
101	Enhancing photovoltaic performance of silicon solar cells by rare earth doped glass ceramic., 2015, , .		O
102	Tb3+/Yb3+ Activated Silica-Hafnia Glass and Glass Ceramics to Improve the Efficiency of Photovoltaic Solar Cells. Lecture Notes in Electrical Engineering, 2016, , 475-482.	0.3	0
103	Enhancing the absorption cross section of rare earth by silver metallic nanoparticles. , 2017, , .		0
104	Comparison of energy transfer between Terbium and Ytterbium ions in glass and glass ceramic: Application in photovoltaic. Solar Energy Advances, 2022, 2, 100012.	1.2	0