Lailai Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4044223/publications.pdf Version: 2024-02-01

Ι ΔΗ ΔΙ ΖΗΙ

#	Article	IF	CITATIONS
1	An efficient multilayer RBF neural network and its application to regression problems. Neural Computing and Applications, 2022, 34, 4133-4150.	3.2	24
2	Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5, .	2.0	13
3	Viscoelastic levitation. Journal of Fluid Mechanics, 2022, 943, .	1.4	1
4	Optimizing low-Reynolds-number predation via optimal control and reinforcement learning. Journal of Fluid Mechanics, 2022, 944, .	1.4	12
5	Propulsion of an elastic filament in a shear-thinning fluid. Soft Matter, 2021, 17, 3829-3839.	1.2	8
6	Non-unique bubble dynamics in a vertical capillary with an external flow. Journal of Fluid Mechanics, 2021, 911, .	1.4	5
7	Rayleigh-Taylor instability of viscous liquid films under a temperature-controlled inclined substrate. Physical Review Fluids, 2021, 6, .	1.0	9
8	Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. Proceedings of the United States of America, 2021, 118, .	3.3	12
9	Upcoming flow promotes the bundle formation of bacterial flagella. Biophysical Journal, 2021, 120, 4391-4398.	0.2	4
10	A low-Reynolds-number actuator driven by instability: rotating or oscillating. Nonlinear Dynamics, 2021, 106, 2005.	2.7	0
11	Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1757-1772.	1.5	6
12	A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature Biotechnology, 2020, 38, 217-224.	9.4	683
13	A note on a swirling squirmer in a shear-thinning fluid. Physics of Fluids, 2020, 32, .	1.6	11
14	Squirming in a viscous fluid enclosed by a Brinkman medium. Physical Review E, 2020, 101, 063105.	0.8	11
15	Harnessing elasticity to generate self-oscillation via an electrohydrodynamic instability. Journal of Fluid Mechanics, 2020, 888, .	1.4	15
16	Effects of the intrinsic curvature of elastic filaments on the propulsion of a flagellated microrobot. Physics of Fluids, 2020, 32, .	1.6	15
17	Particle motion nearby rough surfaces. Physical Review Fluids, 2020, 5, .	1.0	17
18	Actuating a curved elastic filament for bidirectional propulsion. Physical Review Fluids, 2020, 5, .	1.0	6

Lailai Zhu

#	Article	IF	CITATIONS
19	Film thickness distribution in gravity-driven pancake-shaped droplets rising in a Hele-ShawÂcell. Journal of Fluid Mechanics, 2019, 874, 1021-1040.	1.4	12
20	Inertial gravity current produced by the drainage of a cylindrical reservoir from an outer orÂinnerÂedge. Journal of Fluid Mechanics, 2019, 874, 185-209.	1.4	6
21	Sorting by interfacial tension (SIFT): Label-free enzyme sorting using droplet microfluidics. Analytica Chimica Acta, 2019, 1089, 108-114.	2.6	17
22	Flow around a squirmer in a shear-thinning fluid. Journal of Non-Newtonian Fluid Mechanics, 2019, 268, 101-110.	1.0	23
23	The Hydrodynamics of a Micro-Rocket Propelled by a Deformable Bubble. Fluids, 2019, 4, 48.	0.8	6
24	Propulsion driven by self-oscillation via an electrohydrodynamic instability. Physical Review Fluids, 2019, 4, .	1.0	17
25	Pattern formation in oil-in-water emulsions exposed to a salt gradient. Physical Review Fluids, 2019, 4,	1.0	1
26	Inertial manipulation of bubbles in rectangular microfluidic channels. Lab on A Chip, 2018, 18, 1035-1046.	3.1	30
27	Time-dependent motion of a confined bubble in a tube: transition between two steady states. Journal of Fluid Mechanics, 2018, 857, .	1.4	10
28	Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton's theory to empirical models. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	35
29	Rotation of a low-Reynolds-number watermill: theory and simulations. Journal of Fluid Mechanics, 2018, 849, 57-75.	1.4	2
30	Swimming with a cage: low-Reynolds-number locomotion inside a droplet. Soft Matter, 2017, 13, 3161-3173.	1.2	27
31	Bifurcation Dynamics of a Particle-Encapsulating Droplet in Shear Flow. Physical Review Letters, 2017, 119, 064502.	2.9	17
32	Laboratory layered latte. Nature Communications, 2017, 8, 1960.	5.8	20
33	A pancake droplet translating in a Hele-Shaw cell: lubrication film and flow field. Journal of Fluid Mechanics, 2016, 798, 955-969.	1.4	30
34	The stability of a rising droplet: an inertialess non-modal growth mechanism. Journal of Fluid Mechanics, 2016, 786, .	1.4	8
35	The motion of a deforming capsule through a corner. Journal of Fluid Mechanics, 2015, 770, 374-397.	1.4	28
36	Squirming through shear-thinning fluids. Journal of Fluid Mechanics, 2015, 784, .	1.4	80

Lailai Zhu

#	Article	IF	CITATIONS
37	Hydrodynamic Focusing of an Elastic Capsule in Stokes flow: An Exploratory Numerical Study. Procedia IUTAM, 2015, 16, 41-49.	1.2	2
38	The dynamics of a capsule in a wall-bounded oscillating shear flow. Physics of Fluids, 2015, 27, .	1.6	16
39	Motion of an elastic capsule in a constricted microchannel. European Physical Journal E, 2015, 38, 134.	0.7	23
40	A microfluidic device to sort capsules by deformability: a numerical study. Soft Matter, 2014, 10, 7705-7711.	1.2	49
41	Rotational propulsion enabled by inertia. European Physical Journal E, 2014, 37, 16.	0.7	4
42	Low-Reynolds-number swimming in aÂcapillaryÂtube. Journal of Fluid Mechanics, 2013, 726, 285-311.	1.4	120
43	HEMOLYSIS ANALYSIS OF AXIAL BLOOD PUMPS WITH VARIOUS STRUCTURE IMPELLERS. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350054.	0.3	8
44	Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Physics of Fluids, 2012, 24, .	1.6	152
45	Micropropulsion and microrheology in complex fluids via symmetry breaking. Physics of Fluids, 2012, 24, .	1.6	79
46	Locomotion by tangential deformation in a polymeric fluid. Physical Review E, 2011, 83, 011901.	0.8	77
47	Shape Optimization of the Diffuser Blade of an Axial Blood Pump by Computational Fluid Dynamics. Artificial Organs, 2010, 34, 185-192.	1.0	34
48	Video: Instability and bifurcation of a particle-encapsulating droplet in creeping shear flow. , 0, , .		0