Tobias Cronberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043839/publications.pdf

Version: 2024-02-01

57758 32842 10,545 111 44 100 citations h-index g-index papers 114 114 114 6339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GFAp and tau protein as predictors of neurological outcome after out-of-hospital cardiac arrest: A post hoc analysis of the COMACARE trial. Resuscitation, 2022, 170, 141-149.	3.0	13
2	ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Medicine, 2022, 48, 261-269.	8.2	90
3	ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Resuscitation, 2022, 172, 229-236.	3.0	37
4	Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Medicine, 2022, 48, 389-413.	8.2	63
5	Serum neurofilament light levels are correlated to long-term neurocognitive outcome measures after cardiac arrest. Brain Injury, 2022, 36, 800-809.	1.2	7
6	External validation of the 2020 ERC/ESICM prognostication strategy algorithm after cardiac arrest. Critical Care, 2022, 26, 95.	5 . 8	15
7	EEG monitoring after cardiac arrest. Intensive Care Medicine, 2022, 48, 1439-1442.	8.2	10
8	Association Between EEG Patterns and Serum Neurofilament Light After Cardiac Arrest. Neurology, 2022, 98, .	1.1	7
9	In-hospital versus out-of-hospital cardiac arrest: Characteristics and outcomes in patients admitted to intensive care after return of spontaneous circulation. Resuscitation, 2022, 176, 1-8.	3.0	24
10	Biomarkers of brain injury after cardiac arrest; a statistical analysis plan from the TTM2 trial biobank investigators. Resuscitation Plus, 2022, 10, 100258.	1.7	2
11	Hypothermic versus Normothermic Temperature Control after Cardiac Arrest. , 2022, 1, .		17
12	Postanoxic electrographic status epilepticus and serum biomarkers of brain injury. Resuscitation, 2021, 158, 253-257.	3.0	14
13	Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Medicine, 2021, 47, 39-48.	8.2	90
14	Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm. Critical Care, 2021, 25, 83.	5.8	23
15	European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Medicine, 2021, 47, 369-421.	8.2	450
16	Physical activity after cardiac arrest; protocol of a sub-study in the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest trial (TTM2). Resuscitation Plus, 2021, 5, 100076.	1.7	3
17	New evidence supports multi-modal neuroprognostication after cardiac arrest. Resuscitation, 2021, 160, 170-171.	3.0	O
18	European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation, 2021, 161, 220-269.	3.0	358

#	Article	IF	Citations
19	Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. New England Journal of Medicine, 2021, 384, 2283-2294.	27.0	511
20	Plasma proenkephalin A 119–159 and dipeptidyl peptidase 3 on admission after cardiac arrest help predict long-term neurological outcome. Resuscitation, 2021, 163, 108-115.	3.0	1
21	Plasma proenkephalin A 119–159 on intensive care unit admission is a predictor of organ failure and 30-day mortality. Intensive Care Medicine Experimental, 2021, 9, 36.	1.9	5
22	Circulating dipeptidyl peptidase 3 on intensive care unit admission is a predictor of organ dysfunction and mortality. Journal of Intensive Care, 2021, 9, 52.	2.9	6
23	Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Medicine, 2021, 47, 984-994.	8.2	50
24	Influence of sex on survival, neurologic outcomes, and neurodiagnostic testing after out-of-hospital cardiac arrest. Resuscitation, 2021, 167, 66-75.	3.0	14
25	Caregiver burden and health-related quality of life amongst caregivers of out-of-hospital cardiac arrest survivors. Resuscitation, 2021, 167, 118-127.	3.0	6
26	Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Medicine, 2021, 47, 1393-1414.	8.2	165
27	Reply to: Single or sequential neuron-specific enolase blood testing for neuroprognostication, which is superior?. Resuscitation, 2021, 168, 250-251.	3.0	0
28	Arterial blood pressure during targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and long-term cognitive function. European Heart Journal: Acute Cardiovascular Care, 2020, 9, \$122-\$130.	1.0	21
29	Bedside interpretation of simplified continuous EEG after cardiac arrest. Acta Anaesthesiologica Scandinavica, 2020, 64, 85-92.	1.6	10
30	Blood biomarkers of brain injury after cardiac arrest – A dynamic field. Resuscitation, 2020, 156, 273-276.	3.0	9
31	Hypoxic-Ischemic Encephalopathy Evaluated by Brain Autopsy and Neuroprognostication After Cardiac Arrest. JAMA Neurology, 2020, 77, 1430.	9.0	56
32	The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2020, 28, 67.	2.6	9
33	Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care. Critical Care, 2020, 24, 474.	5.8	26
34	Reduced EEG montage has a high accuracy in the post cardiac arrest setting. Clinical Neurophysiology, 2020, 131, 2216-2223.	1.5	8
35	Neuropsychological outcome after cardiac arrest: a prospective case control sub-study of the Targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest trial (TTM2). BMC Cardiovascular Disorders, 2020, 20, 439.	1.7	5
36	Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Medicine, 2020, 46, 1803-1851.	8.2	176

3

#	Article	IF	Citations
37	Targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest: a statistical analysis plan. Trials, 2020, 21, 831.	1.6	7
38	Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensive Care Medicine, 2020, 46, 1852-1862.	8.2	59
39	Brain injury after cardiac arrest: from prognostication of comatose patients to rehabilitation. Lancet Neurology, The, 2020, 19, 611-622.	10.2	90
40	Protocol for outcome reporting and follow-up in the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest trial (TTM2). Resuscitation, 2020, 150, 104-112.	3.0	19
41	Copeptin as a marker of outcome after cardiac arrest: a sub-study of the TTM trial. Critical Care, 2020, 24, 185.	5.8	14
42	Health-related quality of life after surviving an out-of-hospital compared to an in-hospital cardiac arrest: A Swedish population-based registry study. Resuscitation, 2020, 151, 77-84.	3.0	26
43	Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation, 2020, 154, 61-68.	3.0	37
44	Meta-analysis of targeted temperature management in animal models of cardiac arrest. Intensive Care Medicine Experimental, 2020, 8, 3.	1.9	43
45	Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): A randomized clinical trial—Rationale and design. American Heart Journal, 2019, 217, 23-31.	2.7	72
46	Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial. Critical Care, 2019, 23, 30.	5.8	33
47	Reliable neurological prediction after cardiac arrest — Are we willing to pay the price?. Resuscitation, 2019, 139, 365-366.	3.0	1
48	Direct or subacute coronary angiography in out-of-hospital cardiac arrest (DISCO)â€"An initial pilot-study of a randomized clinical trial. Resuscitation, 2019, 139, 253-261.	3.0	58
49	Prognostication after cardiac arrest: Results of an international, multi-professional survey. Resuscitation, 2019, 138, 190-197.	3.0	38
50	Assessing brain injury after cardiac arrest, towards a quantitative approach. Current Opinion in Critical Care, 2019, 25, 211-217.	3.2	8
51	Detailed analysis of health-related quality of life after out-of-hospital cardiac arrest. Resuscitation, 2019, 135, 197-204.	3.0	38
52	Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest. JAMA Neurology, 2019, 76, 64.	9.0	158
53	White matter is what matters after cardiac arrest. Lancet Neurology, The, 2018, 17, 291-292.	10.2	2
54	Reply to: "The value of neuron-specific enolase in prognostication after cardiac arrest― Resuscitation, 2018, 124, e15-e16.	3.0	0

#	Article	IF	CITATIONS
55	Return to Work and Participation in Society After Out-of-Hospital Cardiac Arrest. Circulation: Cardiovascular Quality and Outcomes, 2018, 11, e003566.	2.2	87
56	Design of DISCOâ€"Direct or Subacute Coronary Angiography in Out-of-Hospital Cardiac Arrest study. American Heart Journal, 2018, 197, 53-61.	2.7	26
57	Time to awakening after cardiac arrest and the association with target temperature management. Resuscitation, 2018, 126, 166-171.	3.0	46
58	Cerebral hypoperfusion is not associated with an increase in amyloid β pathology in middleâ€aged or elderly people. Alzheimer's and Dementia, 2018, 14, 54-61.	0.8	21
59	Withdrawal of Life-Sustaining Therapy after Cardiac Arrest. Seminars in Neurology, 2017, 37, 081-087.	1.4	23
60	Hypoxic–Ischemic Encephalopathy. Seminars in Neurology, 2017, 37, 003-004.	1.4	3
61	Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation, 2017, 114, 146-151.	3.0	73
62	Health status and psychological distress among in-hospital cardiac arrest survivors in relation to gender. Resuscitation, 2017, 114, 27-33.	3.0	34
63	Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clinical Neurophysiology, 2017, 128, 681-688.	1.5	48
64	Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation, 2017, 117, 50-57.	3.0	85
65	Dysglycemia, Glycemic Variability, and Outcome After Cardiac Arrest and Temperature Management at 33°C and 36°C*. Critical Care Medicine, 2017, 45, 1337-1343.	0.9	29
66	Intensive care medicine research agenda on cardiac arrest. Intensive Care Medicine, 2017, 43, 1282-1293.	8.2	30
67	Infectious complications after out-of-hospital cardiac arrest—A comparison between two target temperatures. Resuscitation, 2017, 113, 70-76.	3.0	25
68	Serum tau and neurological outcome in cardiac arrest. Annals of Neurology, 2017, 82, 665-675.	5.3	86
69	Outcome after cardiac arrest, time will matter. Resuscitation, 2017, 120, A7-A8.	3.0	2
70	Validity of the IQCODE-CA: An informant questionnaire on cognitive decline modified for a cardiac arrest population. Resuscitation, 2017, 118, 8-14.	3.0	20
71	Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management. Resuscitation, 2017, 119, 89-94.	3.0	63
72	Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at $33\text{\AA}^\circ\text{C}$ and $36\text{\AA}^\circ\text{C}$. Critical Care, 2017, 21, 153.	5.8	64

#	Article	IF	CITATIONS
73	Neuroprognostication of Cardiac Arrest Patients: Outcomes of Importance. Seminars in Respiratory and Critical Care Medicine, 2017, 38, 775-784.	2.1	7
74	Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest – A TTM-Trial Substudy. PLoS ONE, 2017, 12, e0168894.	2.5	55
75	Critical Care Management after Cardiac Arrest. Seminars in Neurology, 2016, 36, 542-549.	1.4	2
76	A low body temperature on arrival at hospital following out-of-hospital-cardiac-arrest is associated with increased mortality in the TTM-study. Resuscitation, 2016, 107, 102-106.	3.0	17
77	Usefulness of Serum B-Type Natriuretic Peptide Levels in Comatose Patients Resuscitated from Out-of-Hospital Cardiac Arrest to Predict Outcome. American Journal of Cardiology, 2016, 118, 998-1005.	1.6	15
78	Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest – an analysis of the TTM trial data. Critical Care, 2016, 20, 381.	5.8	62
79	Association of Circulating MicroRNA-124-3p Levels With Outcomes After Out-of-Hospital Cardiac Arrest. JAMA Cardiology, 2016, 1, 305.	6.1	50
80	Time to start of cardiopulmonary resuscitation and the effect of target temperature management at $33\hat{A}^{\circ}\text{C}$ and $36\hat{A}^{\circ}\text{C}$. Resuscitation, 2016, 99, 44-49.	3.0	10
81	Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 ŰC or 36 ŰC. Resuscitation, 2016, 98, 1-8.	3.0	67
82	Should Postanoxic Status Epilepticus Be Treated Agressively? Yes!. Journal of Clinical Neurophysiology, 2015, 32, 449-451.	1.7	16
83	Neurological prognostication after cardiac arrest and targeted temperature management 33°C versus 36°C: Results from a randomised controlled clinical trial. Resuscitation, 2015, 93, 164-170.	3.0	110
84	Impact of time to return of spontaneous circulation on neuroprotective effect of targeted temperature management at 33 or 36 degrees in comatose survivors of out-of hospital cardiac arrest. Resuscitation, 2015, 96, 310-316.	3.0	43
85	No difference in mortality between men and women after out-of-hospital cardiac arrest. Resuscitation, 2015, 96, 78-84.	3.0	36
86	Cognitive Function in Survivors of Out-of-Hospital Cardiac Arrest After Target Temperature Management at 33°C Versus 36°C. Circulation, 2015, 131, 1340-1349.	1.6	150
87	Mortality and neurological outcome in the elderly after target temperature management for out-of-hospital cardiac arrest. Resuscitation, 2015, 91, 92-98.	3.0	50
88	Target temperature management of $33\hat{A}^{\circ}C$ and $36\hat{A}^{\circ}C$ in patients with out-of-hospital cardiac arrest with initial non-shockable rhythm $\hat{a}\in$ A TTM sub-study. Resuscitation, 2015, 89, 142-148.	3.0	56
89	Cognitive decline after cardiac arrest – It is more to the picture than hypoxic brain injury. Resuscitation, 2015, 91, A3-A4.	3.0	9
90	Outcome following postanoxic status epilepticus in patients with targeted temperature management after cardiac arrest. Epilepsy and Behavior, 2015, 49, 173-177.	1.7	43

#	Article	IF	Citations
91	Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation, 2015, 90, 158-162.	3.0	102
92	Neurologic Function and Health-Related Quality of Life in Patients Following Targeted Temperature Management at 33°C vs 36°C After Out-of-Hospital Cardiac Arrest. JAMA Neurology, 2015, 72, 634.	9.0	150
93	Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C. Journal of the American College of Cardiology, 2015, 65, 2104-2114.	2.8	248
94	Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clinical Neurophysiology, 2015, 126, 2397-2404.	1.5	122
95	Targeted Temperature Management for Cardiac Arrest—Reply. JAMA Neurology, 2015, 72, 1076.	9.0	1
96	European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015. Resuscitation, 2015, 95, 202-222.	3.0	850
97	Prognostication in comatose survivors of cardiac arrest: An advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation, 2014, 85, 1779-1789.	3.0	326
98	Is continuous EEG-monitoring value for money for cardiac arrest patients in the intensive care unit?. Resuscitation, 2014, 85, 716-717.	3.0	3
99	Prognostic value of electroencephalography (EEG) after out-of-hospital cardiac arrest in successfully resuscitated patients used in daily clinical practice. Resuscitation, 2014, 85, 1580-1585.	3.0	34
100	Ischaemic brain damage after cardiac arrest and induced hypothermia–a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation, 2014, 85, 527-532.	3.0	46
101	Neurological prognostication after cardiac arrest—Recommendations from the Swedish Resuscitation Council. Resuscitation, 2013, 84, 867-872.	3.0	121
102	Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest. New England Journal of Medicine, 2013, 369, 2197-2206.	27.0	2,805
103	Cognitive function after cardiac arrest and temperature management; rationale and description of a sub-study in the Target Temperature Management trial. BMC Cardiovascular Disorders, 2013, 13, 85.	1.7	16
104	The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation, 2013, 84, 337-342.	3.0	269
105	Target temperature management after out-of-hospital cardiac arrest—a randomized, parallel-group, assessor-blinded clinical trial—rationale and design. American Heart Journal, 2012, 163, 541-548.	2.7	141
106	Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation, 2009, 80, 784-789.	3.0	185
107	Long-term neurological outcome after cardiac arrest and therapeutic hypothermia. Resuscitation, 2009, 80, 1119-1123.	3.0	136
108	Selective sparing of hippocampal CA3 cells following in vitro ischemia is due to selective inhibition by acidosis. European Journal of Neuroscience, 2005, 22, 310-316.	2.6	20

TOBIAS CRONBERG

#	Article	IF	CITATIONS
109	Chelation of intracellular calcium reduces cell death after hyperglycemic in vitro ischemia in murine hippocampal slice cultures. Brain Research, 2005, 1049, 120-127.	2.2	7
110	Glucose but Not Lactate in Combination With Acidosis Aggravates Ischemic Neuronal Death In Vitro. Stroke, 2004, 35, 753-757.	2.0	51
111	Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis Nature Medicine, 2001, 7, 324-330.	30.7	311