Renxin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043654/publications.pdf Version: 2024-02-01

RENVIN WANC

#	Article	IF	CITATIONS
1	Vector High-Resolution Marine Turbulence Sensor Based on a MEMS Bionic Cilium-Shaped Structure. IEEE Sensors Journal, 2021, 21, 8741-8750.	4.7	9
2	The Influence of Ambient Temperature on the Sensitivity of MEMS Vector Hydrophone. IEEE Sensors Journal, 2021, 21, 17678-17685.	4.7	1
3	Design and realization of dumbbell-shaped ciliary MEMS vector hydrophone. Sensors and Actuators A: Physical, 2020, 311, 112019.	4.1	11
4	A Monolithic Integration Bio-Inspired Three-Dimensional MEMS Vector Hydrophone. IEEE Access, 2019, 7, 102366-102376.	4.2	7
5	New insight into contradictive relationship between sensitivity and working bandwidth of cilium MEMS bionic vector hydrophone. Journal of Micromechanics and Microengineering, 2019, 29, 115016.	2.6	6
6	A bionic micro-electromechanical system piezo-resistive vector hydrophone that suppresses vibration noise. Journal of Micromechanics and Microengineering, 2019, 29, 115007.	2.6	7
7	Detection and Classification of Abnormities of First Heart Sound Using Empirical Wavelet Transform. IEEE Access, 2019, 7, 139643-139652.	4.2	13
8	Design and optimization of stress centralized MEMS vector hydrophone with high sensitivity at low frequency. Mechanical Systems and Signal Processing, 2018, 104, 607-618.	8.0	19
9	Cross-supported planar MEMS vector hydrophone for high impact resistance. Sensors and Actuators A: Physical, 2017, 263, 563-570.	4.1	14
10	Development of cup-shaped micro-electromechanical systems-based vector hydrophone. Journal of Applied Physics, 2016, 120, .	2.5	24
11	Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene. Journal Physics D: Applied Physics, 2016, 49, 07LT02.	2.8	23
12	"Lollipop-shaped―high-sensitivity Microelectromechanical Systems vector hydrophone based on Parylene encapsulation. Journal of Applied Physics, 2015, 118, .	2.5	30