Srinivasan Mp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4042820/publications.pdf Version: 2024-02-01

SDINIVASAN MD

#	Article	IF	CITATIONS
1	Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 2016, 283, 789-805.	6.6	876
2	Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon, 2001, 39, 877-886.	5.4	280
3	Preparation of high-surface-area activated carbons from coconut shell. Microporous and Mesoporous Materials, 1999, 27, 11-18.	2.2	245
4	Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials, 2000, 12, 62-65.	11.1	219
5	Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials, 2001, 43, 267-275.	2.2	213
6	Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities. Langmuir, 2004, 20, 2309-2314.	1.6	212
7	Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of Environmental Chemical Engineering, 2018, 6, 5101-5118.	3.3	158
8	Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresource Technology, 2012, 123, 646-652.	4.8	151
9	Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous and Mesoporous Materials, 2015, 218, 55-61.	2.2	151
10	Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chemical Engineering Journal, 2015, 273, 622-629.	6.6	149
11	Caffeine extraction rates from coffee beans with supercritical carbon dioxide. AICHE Journal, 1992, 38, 761-770.	1.8	145
12	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	6.6	90
13	An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass. Reviews in Environmental Science and Biotechnology, 2018, 17, 813-837.	3.9	82
14	A simple method for developing mesoporosity in activated carbon. Separation and Purification Technology, 2003, 31, 47-52.	3.9	76
15	Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution – Immersion successive ionic layer adsorption and reaction process. Journal of Colloid and Interface Science, 2011, 363, 51-58.	5.0	76
16	Supercritical fluid desorption from activated carbon. Chemical Engineering Science, 1990, 45, 1885-1895.	1.9	73
17	Effect of Shear Stress within the Spinneret on Hollow Fiber Membrane Morphology and Separation Performance. Industrial & Engineering Chemistry Research, 1998, 37, 3930-3938.	1.8	73
18	Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environmental Chemistry Letters, 2018, 16, 821-844.	8.3	72

#	Article	IF	CITATIONS
19	Fabrication of advance magnetic carbon nano-materials and their potential applications: A review. Journal of Environmental Chemical Engineering, 2019, 7, 102812.	3.3	71
20	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	2.6	66
21	Effect of Ion Exchange and Dehydration Temperature on the Adsorption and Diffusion of Gases in ETS-4. Industrial & Engineering Chemistry Research, 2004, 43, 5281-5290.	1.8	61
22	Multilayered Gold-Nanoparticle/Polyimide Composite Thin Film through Layer-by-Layer Assembly. Langmuir, 2007, 23, 10102-10108.	1.6	60
23	Langmuir-blodgett multilayers of polymer-merocyanine-dye mixtures. Thin Solid Films, 1987, 146, 209-220.	0.8	59
24	Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. Journal of Membrane Science, 2001, 182, 111-123.	4.1	58
25	Enhanced second harmonic generation from multilayered langmuir/blodgett films of dye. Optics Communications, 1987, 61, 351-356.	1.0	56
26	Sub-supercritical liquefaction of sugarcane bagasse for production of bio-oil and char: Effect of two solvents. Journal of Environmental Chemical Engineering, 2018, 6, 6589-6601.	3.3	49
27	Future applications of ordered polymeric thin films. Thin Solid Films, 1987, 152, 377-403.	0.8	47
28	Fabrication of multi-layer composite hollow fiber membranes for gas separation. Journal of Membrane Science, 1999, 152, 211-225.	4.1	45
29	Modeling Gas Adsorption and Transport in Small-Pore Titanium Silicates. Langmuir, 2005, 21, 4532-4546.	1.6	44
30	Supported lipid bilayers lifted from the substrate by layer-by-layer polyion cushions on self-assembled monolayers. Colloids and Surfaces B: Biointerfaces, 2003, 28, 319-329.	2.5	43
31	Application of Direct Covalent Molecular Assembly in the Fabrication of Polyimide Ultrathin Films. Langmuir, 2005, 21, 3389-3395.	1.6	42
32	Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. Nanoscale, 2012, 4, 2296.	2.8	38
33	Layer-by-layer assembled gold nanoparticle films on amine-terminated substrates. Journal of Colloid and Interface Science, 2008, 319, 450-456.	5.0	35
34	Adsorption of ethyl benzene on activated carbon from supercritical CO2. AICHE Journal, 1998, 44, 2620-2627.	1.8	34
35	A- and B-Site Substituted Lanthanum Cobaltite Perovskite as High Temperature Oxygen Sorbent. 1. Thermogravimetric Analysis of Equilibrium and Kinetics. Industrial & Engineering Chemistry Research, 2008, 47, 154-162.	1.8	34
36	Solvothermal co-liquefaction of sugarcane bagasse and polyethylene under sub-supercritical conditions: Optimization of process parameters. Chemical Engineering Research and Design, 2020, 137, 300-311.	2.7	31

#	Article	IF	CITATIONS
37	Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy, 2019, 141, 707-716.	4.3	30
38	Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Applied Materials & amp; Interfaces, 2011, 3, 4619-4625.	4.0	29
39	Covalent Molecular Assembly in Supercritical Carbon Dioxide:Â A Comparative Study between Amine- and Anhydride-Derivatized Surfaces. Langmuir, 2006, 22, 4092-4099.	1.6	27
40	Covalent molecular assembly of multilayer dendrimer ultrathin films in supercritical medium. Journal of Colloid and Interface Science, 2007, 306, 118-127.	5.0	26
41	Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 23729-23734.	1.5	26
42	Covalent Assembly of Gold Nanoparticles: An Application toward Transistor Memory. Journal of Physical Chemistry B, 2012, 116, 9784-9790.	1.2	24
43	Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. Journal of Supercritical Fluids, 2016, 107, 513-518.	1.6	24
44	Cross-linked polyimide–polythiophene composite films with reduced surface resistivities. Thin Solid Films, 2005, 479, 95-102.	0.8	23
45	Dendrimer-encapsulated Pt nanoparticles in supercritical medium: Synthesis, characterization, and application to device fabrication. Journal of Colloid and Interface Science, 2009, 332, 505-510.	5.0	23
46	Covalent Molecular Assembly of Oligoimide Ultrathin Films in Supercritical and Liquid Solvent Media. Langmuir, 2005, 21, 7812-7822.	1.6	22
47	Synthesis of novel magnetic carbon nano-composite from waste biomass: A comparative study of industrially adoptable hydro/solvothermal co-precipitation route. Journal of Environmental Chemical Engineering, 2020, 8, 103519.	3.3	22
48	Catalytic upgradation of bio-oil over metal supported activated carbon catalysts in sub-supercritical ethanol. Journal of Environmental Chemical Engineering, 2021, 9, 105059.	3.3	22
49	Patterned Supported Bilayers on Self-Assembled Monolayers:Â Confinement of Adjacent Mobile Bilayers. Langmuir, 2001, 17, 7951-7954.	1.6	21
50	Tribological Properties of Nanoparticle-Laden Ultrathin Films Formed by Covalent Molecular Assembly. Langmuir, 2007, 23, 8299-8303.	1.6	21
51	Effects of Site Occupancy, Cation Relocation, and Pore Geometry on Adsorption Kinetics in ETS-4. Journal of Physical Chemistry B, 2005, 109, 3257-3261.	1.2	20
52	Effect of solvent on hydro-solvothermal co liquefaction of sugarcane bagasse and polyethylene for bio-oil production in ethanol–water system. Chemical Engineering Research and Design, 2021, 148, 1060-1069.	2.7	20
53	Entrainment of aqueous subphase in Langmuir-Blodgett films. Thin Solid Films, 1988, 159, 191-205.	0.8	19
54	Pd–Pt and Fe–Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2008, 320, 333-340.	5.0	19

#	Article	IF	CITATIONS
55	Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Materials Letters, 2012, 68, 287-289.	1.3	19
56	In Situ Synthesis of High Density sub-50 nm ZnO Nanopatterned Arrays Using Diblock Copolymer Templates. ACS Applied Materials & Interfaces, 2013, 5, 5727-5732.	4.0	19
57	Characterization of low-k dielectric trench surface cleaning after a fluorocarbon etch. Thin Solid Films, 2004, 462-463, 250-256.	0.8	18
58	Friction, adhesion and wear durability of an ultra-thin perfluoropolyether-coated 3-glycidoxypropyltrimethoxy silane self-assembled monolayer on a Si surface. Philosophical Magazine, 2007, 87, 3209-3227.	0.7	18
59	Macroscopic high density nanodisc arrays of zinc oxide fabricated by block copolymer self-assembly assisted nanoimprint lithography. Journal of Materials Chemistry, 2012, 22, 21871.	6.7	18
60	Synthesis of 16-Mercaptohexadecanoic acid capped gold nanoparticles and their immobilization on a substrate. Materials Letters, 2012, 67, 315-319.	1.3	18
61	Catalytic co-liquefaction of sugarcane bagasse and polyethylene for bio-oil production under supercritical conditions: Effect of catalysts. Journal of Analytical and Applied Pyrolysis, 2021, 153, 104944.	2.6	17
62	Covalent Molecular Assembly in a Supercritical Medium:Â Formation of Nanoparticles Encapsulated in Immobilized Dendrimers. Industrial & Engineering Chemistry Research, 2007, 46, 464-471.	1.8	16
63	Structure-related lower surface resistivity and faster doping of poly(thiophene-3-acetic) Tj ETQq1 1 0.784314 rgB Physics, 2008, 112, 223-225.	T /Overloo 2.0	ck 10 Tf 50 4 16
64	Comparative study of microwave and conventional solvothermal synthesis for magnetic carbon nanocomposites and bio-oil from rice husk. Journal of Environmental Chemical Engineering, 2019, 7, 103266.	3.3	15
65	Synthesis of short chain thiol capped gold nanoparticles, their stabilization and immobilization on silicon surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 149-156.	2.3	13
66	Molecular orientation in mixed LB films containing photochromic molecules. Thin Solid Films, 1997, 307, 266-273.	0.8	12
67	Imidisation of Langmuir–Blodgett films using a supercritical medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 527-534.	2.3	12
68	Ultra thin films of oligoimide through molecular assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 295-299.	2.3	12
69	Polythiophene–gold nanoparticle hybrid systems: Langmuir–Blodgett assembly of nanostructured films. Nanoscale, 2013, 5, 2974.	2.8	12
70	Single step peroxidase extraction and oxidation of highly concentrated ethanol and phenol aqueous solutions using supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 116, 209-214.	1.6	12
71	The impact of nitrogen co-implantation on boron ultra-shallow junction formation and underlying physical understanding. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 43-48.	1.7	11
72	Solubility Measurement, Modeling, and Thermodynamic Functions for <i>para</i> -Methoxyphenylacetic Acid in Pure and Mixed Organic and Aqueous Systems. Journal of Chemical & Engineering Data, 2018, 63, 3369-3381.	1.0	11

#	Article	IF	CITATIONS
73	On-line diagnostics for Langmuir-Blodgett film growth. Thin Solid Films, 1985, 134, 209-216.	0.8	10
74	Ethyl acetate desorption from activated carbon with supercritical carbon dioxide: effect of initial loading. Chemical Engineering Science, 1991, 46, 371-374.	1.9	10
75	Defect engineering by surface chemical state in boron-doped preamorphized silicon. Applied Physics Letters, 2007, 91, 102112.	1.5	10
76	Covalent molecular assembly in supercritical carbon dioxide: Formation of nanoparticles in immobilized dendrimers within a porous silica gel matrix. Journal of Colloid and Interface Science, 2009, 333, 679-683.	5.0	10
77	Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process. Materials Chemistry and Physics, 2012, 133, 126-134.	2.0	10
78	Formation of polythiophene multilayers on solid surfaces by covalent molecular assembly. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 168, 45-54.	1.7	9
79	Subdrop ejection from double emulsion drops in shear flow. Journal of Membrane Science, 1986, 26, 231-236.	4.1	8
80	Composite Langmuir–Blodgett films containing polypyrrole and polyimide. Thin Solid Films, 1998, 327-329, 127-130.	0.8	8
81	Effect of Surrounding Medium on Resistance of a Molecular Monolayer Junction. Journal of Physical Chemistry C, 2008, 112, 297-302.	1.5	8
82	Deposition of zwitterionic polymer brushes in a dense gas medium. Journal of Colloid and Interface Science, 2015, 448, 156-162.	5.0	8
83	Mitigation of scale formation in unbaffled stirred tanks-experimental assessment and quantification. Chemical Engineering Research and Design, 2019, 146, 11-21.	2.7	8
84	Partial molar volumes of ethyl acetate from supercritical CO2 desorption data. Journal of Supercritical Fluids, 1991, 4, 69-71.	1.6	7
85	Polyimide films from linear and network precursors. Journal of Materials Chemistry, 1999, 9, 655-659.	6.7	7
86	Conductive composite films of polyimide and poly(3-dodecylthiophene). Synthetic Metals, 1999, 105, 1-7.	2.1	7
87	Langmuir–Blodgett film fabricated with dendrimer modified polyimide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 183-190.	2.3	7
88	Langmuir–Blodgett film fabricated with soluble imidized polyimide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 451-456.	2.3	7
89	Molecular assembly of materials with covalent bonding: Path to robust structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 132, 43-47.	1.7	7
90	Understanding of Carbon/Fluorine Co-implant Effect on Boron-Doped Junction Formed during Soak Annealing. Journal of the Electrochemical Society, 2008, 155, H69.	1.3	7

#	Article	IF	CITATIONS
91	Composite LB films of copper octabutoxy phthalocyanine and polyimide. Materials Science and Engineering C, 1999, 8-9, 103-106.	3.8	6
92	The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 240-244.	0.6	6
93	Ultra-thin composite films from polyimide and electroactive polymer through covalent molecular assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 509-514.	2.3	6
94	Molecular dynamics with phase-shift-based electronic stopping for calibration of ion implantation profiles in crystalline silicon. Thin Solid Films, 2006, 504, 121-125.	0.8	6
95	Estimation and Comparison of Pore Charge on Titania and Zirconia Membranes Prepared by Sol-Gel Route Using Zeta Potential Measurement. Journal of Sol-Gel Science and Technology, 2003, 28, 327-333.	1.1	5
96	Understanding of Boron Junction Stability in Preamorphized Silicon after Optimized Flash Annealing. Journal of the Electrochemical Society, 2008, 155, H508.	1.3	5
97	Ultrathin PFPE Film Systems Fabricated by Covalent Assembly: An Application to Tribology. Tribology Letters, 2012, 45, 371-378.	1.2	5
98	Covalent molecular assembly: Construction of ultrathin multilayer films by a two-dimensional fabrication method. Journal of Colloid and Interface Science, 2013, 392, 158-166.	5.0	5
99	In situ application of polyelectrolytes in zinc oxide nanorod synthesis: Understanding the effects on the structural and optical characteristics. Journal of Colloid and Interface Science, 2013, 394, 13-19.	5.0	5
100	A capacitance sensor for on-line monitoring of ultrathin polymeric film growth. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1988, 11, 184-190.	0.4	4
101	Effect of Si:Ti ratio on energetic heterogeneity in ETS-4. Chemical Engineering Science, 2004, 59, 6021-6025.	1.9	4
102	Comprehensive modeling of ion-implant amorphization in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 383-385.	1.7	4
103	Linear and networked blends and copolymers of polyimide. Journal of Applied Polymer Science, 2006, 100, 3000-3008.	1.3	4
104	Synthesis and Controlled Growth of ZnO Nanorods Based Hybrid Device Structure by Aqueous Chemical Method. Advanced Materials Research, 2010, 123-125, 779-782.	0.3	4
105	Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly. Thin Solid Films, 2015, 589, 238-245.	0.8	4
106	Fabrication of anti-poisoning core-shell TiO2 photocatalytic system through a 4-methoxycalix[7]arene film. Materials Today Chemistry, 2016, 1-2, 1-6.	1.7	4
107	Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications. Materials Chemistry and Physics, 2017, 186, 36-43.	2.0	4
108	Production of crude bio-oil and biochar from hydrothermal conversion of jujube stones with metal carbonates. Biofuels, 2018, 9, 613-623.	1.4	4

#	Article	IF	CITATIONS
109	ADSORPTION AND DESORPTION OF PHENOLS AND DYES ON MICROPOROUS AND MESOPOROUS ACTIVATED CARBONS. , 2000, , .		3
110	Nanopackaging solution from clean room to UHV Environment: Hydrogen Passivated Si (100) Substrate Fabrication and Use for Atomic Scale Investigations and Self-Assembled Monolayer Grafting. Procedia Engineering, 2016, 141, 121-129.	1.2	3
111	MESOPOROUS HIGH-SURFACE-AREA ACTIVATED CARBON PRODUCED FROM COCONUT SHELL. , 2000, , .		2
112	Application of molecular dynamics for low-energy ion implantation in crystalline silicon. Journal of Vacuum Science & Technology B, 2006, 24, 462.	1.3	2
113	Experimental and simulation study of the flash lamp annealing for boron ultra-shallow junction formation and its stability. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 14-19.	1.7	2
114	Analytical damage tables for crystalline silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 463.	1.6	1
115	Bimodal distribution of damage morphology generated by ion implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 389-391.	1.7	0
116	Angled XPS Analysis of Low-k Dielectric Surfaces after Cleaning. Solid State Phenomena, 2005, 103-104, 331-336.	0.3	0
117	Continuum modeling of post-implantation damage and the effective plus factor in crystalline silicon at room temperature. Thin Solid Films, 2006, 504, 269-273.	0.8	0
118	The Impact of Boron Halo on Phosphorus Junction Formation and Stability. Electrochemical and Solid-State Letters, 2008, 11, H179.	2.2	0