Clare Gough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct genetic basis for root responses to lipo-chitooligosaccharide signal molecules from different microbial origins. Journal of Experimental Botany, 2021, 72, 3821-3834.	4.8	5
2	LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula. Plant and Cell Physiology, 2020, 61, 203-211.	3.1	19
3	<i>Sinorhizobium meliloti</i> succinylated highâ€molecularâ€weight succinoglycan and the <i>Medicago truncatula</i> LysM receptorâ€like kinase MtLYK10 participate independently in symbiotic infection. Plant Journal, 2020, 102, 311-326.	5.7	37
4	The ex planta signal activity of a Medicago ribosomal uL2 protein suggests a moonlighting role in controlling secondary rhizobial infection. PLoS ONE, 2020, 15, e0235446.	2.5	1
5	The <i>Medicago truncatula</i> LysM receptorâ€like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. New Phytologist, 2019, 223, 1516-1529.	7.3	59
6	Endosymbiotic <i>Sinorhizobium meliloti</i> modulate <i>Medicago</i> root susceptibility to secondary infection via ethylene. New Phytologist, 2019, 223, 1505-1515.	7.3	8
7	Lipo hitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. New Phytologist, 2019, 221, 2190-2202.	7.3	17
8	Lipoâ€chitooligosaccharide signalling blocks a rapid pathogenâ€induced <scp>ROS</scp> burst without impeding immunity. New Phytologist, 2019, 221, 743-749.	7.3	24
9	Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. Frontiers in Plant Science, 2018, 9, 923.	3.6	35
10	Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2017, 68, erw474.	4.8	40
11	Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS ONE, 2017, 12, e0188923.	2.5	14
12	Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. Plant Signaling and Behavior, 2015, 10, e977741.	2.4	19
13	Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Mycâ€ <scp>LCO</scp> s in <i>Medicago truncatula</i> . New Phytologist, 2015, 208, 224-240.	7.3	61
14	Lateral root formation and patterning in Medicago truncatula. Journal of Plant Physiology, 2014, 171, 301-310.	3.5	67
15	Nod factor perception protein carries weight in biotic interactions. Trends in Plant Science, 2013, 18, 566-574.	8.8	53
16	Lipo-chitooligosaccharidic Symbiotic Signals Are Recognized by LysM Receptor-Like Kinase LYR3 in the Legume <i>Medicago truncatula</i> . ACS Chemical Biology, 2013, 8, 1900-1906.	3.4	83
17	<scp>NFP</scp> , a <scp>L</scp> ys <scp>M</scp> protein controlling <scp>N</scp> od <scp>f</scp> actor perception, also intervenes in <i><scp>M</scp>edicago truncatula</i> resistance to pathogens. New Phytologist, 2013, 198, 875-886.	7.3	144
18	Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2013, 8, e22999.	2.4	6

CLARE GOUGH

#	Article	IF	CITATIONS
19	Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2011, 24, 867-878.	2.6	203
20	Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis. PLoS ONE, 2011, 6, e26114.	2.5	70
21	The <i>RPG</i> gene of <i>Medicago truncatula</i> controls <i>Rhizobium</i> -directed polar growth during infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9817-9822.	7.1	141
22	Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling. Plant Physiology, 2007, 145, 183-191.	4.8	322
23	The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes. Plant Physiology, 2006, 142, 265-279.	4.8	467
24	Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal, 2005, 44, 195-207.	5.7	305
25	NSP1 of the CRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription. Science, 2005, 308, 1789-1791.	12.6	534
26	Expression Profiling in Medicago truncatula Identifies More Than 750 Genes Differentially Expressed during Nodulation, Including Many Potential Regulators of the Symbiotic Program. Plant Physiology, 2004, 136, 3159-3176.	4.8	269
27	Rhizobium Symbiosis: Insight into Nod Factor Receptors. Current Biology, 2003, 13, R973-R975.	3.9	12
28	The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant Journal, 2003, 34, 495-506.	5.7	350
29	A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots ofMedicago truncatula Â. Plant Physiology, 2003, 131, 952-962.	4.8	335
30	Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway. Plant Cell, 2000, 12, 1647-1665.	6.6	519
31	Specific Flavonoids Promote Intercellular Root Colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Molecular Plant-Microbe Interactions, 1997, 10, 560-570.	2.6	85
32	Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements. Molecular Genetics and Genomics, 1995, 247, 323-337.	2.4	21
33	The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Molecular Microbiology, 1995, 15, 1095-1114.	2.5	215
34	Similarity between the Rhizobium meliloti flip gene and pathogenicity-associated genes from animal and plant pathogens. Gene, 1995, 152, 65-67.	2.2	12
35	Structural organization of str 246C and str 246N, plant defense-related genes from Nicotiana tabacum. Plant Molecular Biology, 1994, 26, 515-521.	3.9	12