
Yanyan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4042310/publications.pdf Version: 2024-02-01

YANYAN MANC

#	Article	IF	CITATIONS
1	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	4.1	93
2	Structure Tunable Organic–Inorganic Bismuth Halides for an Enhanced Two-Dimensional Lead-Free Light-Harvesting Material. Chemistry of Materials, 2017, 29, 5463-5467.	6.7	68
3	High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chemical Communications, 2015, 51, 9317-9319.	4.1	54
4	Substrate-Driven Transient Self-Assembly and Spontaneous Disassembly Directed by Chemical Reaction with Product Release. Journal of the American Chemical Society, 2019, 141, 4182-4185.	13.7	48
5	CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. Materials, 2019, 12, 1643.	2.9	47
6	Organotemplate-free synthesis of an open-framework magnesium aluminophosphate with proton conduction properties. Chemical Communications, 2015, 51, 2149-2151.	4.1	38
7	Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase–mimetic properties of cobalt oxyhydroxide nanosheets. Mikrochimica Acta, 2017, 184, 4749-4755.	5.0	35
8	Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(<scp>iii</scp>)-carboxylate chain built from chiral ligands. Dalton Transactions, 2015, 44, 13480-13484.	3.3	30
9	High-performance low-temperature magnetic refrigerants made of gadolinium-hydroxy-chloride. Journal of Materials Chemistry C, 2016, 4, 6473-6477.	5.5	30
10	Organotemplate-free hydrothermal synthesis of an aluminophosphate molecular sieve with AEN zeotype topology and properties of its derivatives. Chemical Communications, 2014, 50, 15400-15403.	4.1	25
11	Zeolite-Enhanced Sustainable Pd-Catalyzed C–C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS Applied Materials & Interfaces, 2020, 12, 11419-11427.	8.0	23
12	Oligoaniline-functionalized polysiloxane/Prussian blue composite towards bifunctional electrochromic supercapacitors. New Journal of Chemistry, 2020, 44, 8138-8147.	2.8	19
13	Sustainable Ligandâ€Free, Palladiumâ€Catalyzed Suzuki–Miyaura Reactions in Water: Insights into the Role of Base. ChemSusChem, 2019, 12, 5265-5273.	6.8	18
14	Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction. Catalysts, 2020, 10, 192.	3.5	17
15	ACO-Zeotype Iron Aluminum Phosphates with Variable Al/Fe Ratios Controlled by F ^{â^'} Ions. Inorganic Chemistry, 2011, 50, 1820-1825.	4.0	16
16	Highly Efficient Zeolite-Supported Pd Catalyst Activated in C–C Cross-Coupling Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 11241-11249.	3.7	14
17	LEV-zeotype magnesium aluminophosphates with variable Mg/Al ratios. Dalton Transactions, 2012, 41, 6855.	3.3	13
18	Rigid Amineâ€Induced Pseudoâ€3 D Leadâ€Free Bismuth Halide Perovskite with an Improved Band Edge for Visibleâ€Light Absorption. ChemSusChem, 2020, 13, 2753-2760.	6.8	13

Yanyan Wang

#	Article	IF	CITATIONS
19	Copper(<scp>i</scp>)/(<scp>ii</scp>)-redox triggered efficient and green rare-earth separation using a heterometallic metal–organic framework. Green Chemistry, 2017, 19, 1250-1254.	9.0	12
20	Construction of magnet-type coordination polymers using high-spin {Ni ₄ }-citrate cubane as secondary building units. Dalton Transactions, 2016, 45, 10798-10806.	3.3	9
21	A chiral open-framework fluorinated cobalt phosphate consists of distorted F-encapsulated double 4-ring units with bulk homochirality. Chemical Communications, 2019, 55, 226-228.	4.1	9
22	The Intercalation of CORM-2 with Pharmaceutical Clay Montmorillonite (MMT) Aids for Therapeutic Carbon Monoxide Release. International Journal of Molecular Sciences, 2019, 20, 3453.	4.1	8
23	Triazine-wingtips accelerated NHC-Pd catalysed carbonylative Sonogashira cross-coupling reaction. Chemical Communications, 2021, 57, 13020-13023.	4.1	8
24	Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism. Dalton Transactions, 2016, 45, 1103-1110.	3.3	7
25	A sustainable water-tolerant catalyst with enhanced Lewis acidity: Dual activation of Cp2TiCl2 via ligand and solvent. Molecular Catalysis, 2020, 498, 111247.	2.0	5
26	Velvet-like carbon nitride as a solid-phase microextraction fiber coating for determination of polycyclic aromatic hydrocarbons by gas chromatography. Journal of Chromatography A, 2022, 1671, 462993.	3.7	5
27	A new magnesium-containing aluminophosphate with a zeolite-like structure. RSC Advances, 2016, 6, 1098-1102.	3.6	4
28	One-Dimensional Perovskite-like Cu(I)-Halides with Ideal Bandgap Based on Quantum-Well Structure. Inorganic Chemistry, 2022, 61, 8521-8528.	4.0	4
29	Synthesis of quinolines via sequential addition and I2-mediated desulfurative cyclization. RSC Advances, 2021, 11, 38889-38893.	3.6	2
30	Tracking the dimensional conversion process of semiconducting lead bromide perovskites by mass spectroscopy, powder X-ray diffraction, microcalorimetry and crystallography. Dalton Transactions, 2019, 48, 12888-12894.	3.3	1
31	One-pot synthesis of benzo[<i>b</i>][1,4]diazepines <i>via</i> the carbonylative Sonogashira reaction and aza-Michael addition cyclocondensation. New Journal of Chemistry, 2022, 46, 5927-5931.	2.8	1