
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4042265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Applied Energy Materials, 2022, 5, 3952-3965.	2.5	39
2	Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy, 2022, 91, 106656.	8.2	26
3	A Personalized Acoustic Interface for Wearable Human–Machine Interaction. Advanced Functional Materials, 2022, 32, 2109430.	7.8	69
4	Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Applied Energy, 2022, 307, 118174.	5.1	20
5	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing. Small Methods, 2022, 6, e2101051.	4.6	61
6	Bioinspired Nanocomposites with Selfâ€Adaptive Stress Dispersion for Superâ€Foldable Electrodes. Advanced Science, 2022, 9, e2103714.	5.6	49
7	Ultrafast and Selective Nanofiltration Enabled by Graphene Oxide Membranes with Unzipped Carbon Nanotube Networks. ACS Applied Materials & Interfaces, 2022, 14, 1850-1860.	4.0	60
8	Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy, 2022, 93, 106855.	8.2	31
9	Recent Advances on Dualâ€Band Electrochromic Materials and Devices. Advanced Functional Materials, 2022, 32, .	7.8	81
10	Wearable Pressure Sensors for Pulse Wave Monitoring. Advanced Materials, 2022, 34, e2109357.	11.1	253
11	Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Interfaces, 2022, 14, 7301-7310.	4.0	86
12	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
13	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	18.7	145
14	Wearable physical sensors. , 2022, , 183-218.		0
15	Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. Journal of Materials Chemistry C, 2022, 10, 13789-13796.	2.7	19
16	Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science, 2022, 375, 852-859.	6.0	96
17	A Deepâ€Learningâ€Assisted Onâ€Mask Sensor Network for Adaptive Respiratory Monitoring. Advanced Materials, 2022, 34, e2200252.	11.1	72
18	Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays. ACS Nano, 2022, 16, 6734-6743.	7.3	49

#	Article	IF	CITATIONS
19	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	13.1	307
20	Graphene Oxide Nanofiltration Membrane Based on Three-Dimensional Size-Controllable Metal–Organic Frameworks for Water Treatment. ACS Applied Nano Materials, 2022, 5, 5196-5207.	2.4	42
21	Recent Advances in Graphene Oxide Membranes for Nanofiltration. ACS Applied Nano Materials, 2022, 5, 3121-3145.	2.4	42
22	A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at â^25°C. Cell Reports Physical Science, 2022, 3, 100805.	2.8	10
23	Advances in graphene oxide membranes for water treatment. Nano Research, 2022, 15, 6636-6654.	5.8	76
24	Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS Nano, 2022, 16, 6013-6022.	7.3	59
25	Flexible Prussian Blueâ€Au Fibers as Robust Peroxidase – Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. Electroanalysis, 2022, 34, 1763-1771.	1.5	10
26	Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98, 107282.	8.2	56
27	Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter, 2022, 5, 1342-1345.	5.0	29
28	Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Advanced Functional Materials, 2022, 32, .	7.8	51
29	Self-powered sensing systems with learning capability. Joule, 2022, 6, 1475-1500.	11.7	38
30	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	11.1	63
31	A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy, 2022, 101, 107572.	8.2	21
32	Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioactive Materials, 2021, 6, 230-243.	8.6	81
33	Advances in triboelectric nanogenerators for biomedical sensing. Biosensors and Bioelectronics, 2021, 171, 112714.	5.3	159
34	Tailoring carbon nanomaterials via a molecular scissor. Nano Today, 2021, 36, 101033.	6.2	67
35	Wearable triboelectric nanogenerators for heart rate monitoring. Chemical Communications, 2021, 57, 5871-5879.	2.2	64
36	A Poriferous Nanoflake-Assembled Flower-Like Ni ₅ P ₄ Anode for High-Performance Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	4.7	6

#	Article	IF	CITATIONS
37	Smart textiles for personalized thermoregulation. Chemical Society Reviews, 2021, 50, 9357-9374.	18.7	184
38	Advances in self-powered chemical sensing <i>via</i> a triboelectric nanogenerator. Nanoscale, 2021, 13, 2065-2081.	2.8	81
39	Advances in Nanostructures for Highâ€Performance Triboelectric Nanogenerators. Advanced Materials Technologies, 2021, 6, 2000916.	3.0	94
40	Editorial: Emerging Micro- and Nanotechnologies for Medical and Pharmacological Applications. Frontiers in Pharmacology, 2021, 12, 648749.	1.6	6
41	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	7.8	169
42	In Vivo Intravascular Pacing Using a Wireless Microscale Stimulator. Annals of Biomedical Engineering, 2021, 49, 2094-2102.	1.3	7
43	3Dâ€Printed Triboelectric Nanogenerators: State of the Art, Applications, and Challenges. Advanced Energy and Sustainability Research, 2021, 2, 2000045.	2.8	32
44	Triboelectric Nanogenerators: Advances in Nanostructures for Highâ€Performance Triboelectric Nanogenerators (Adv. Mater. Technol. 3/2021). Advanced Materials Technologies, 2021, 6, 2170016.	3.0	8
45	Engineering bandgap of CsPbI3 over 1.7 eV with enhanced stability and transport properties. IScience, 2021, 24, 102235.	1.9	29
46	Leveraging triboelectric nanogenerators for bioengineering. Matter, 2021, 4, 845-887.	5.0	192
47	Textiles for learning tactile interactions. Nature Electronics, 2021, 4, 175-176.	13.1	76
48	Smart polyethylene textiles for radiative and evaporative cooling. Joule, 2021, 5, 752-754.	11.7	56
49	All-in-one conformal epidermal patch for multimodal biosensing. Matter, 2021, 4, 1102-1105.	5.0	36
50	Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry, 2021, 3, 279-290.	4.4	100
51	Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Advanced Materials, 2021, 33, e2007502.	11.1	92
52	Water-evaporation-induced intermolecular force for nano-wrinkled polymeric membrane. Cell Reports Physical Science, 2021, 2, 100441.	2.8	18
53	Nickel/Cobalt Molybdate Hollow Rods Induced by Structure and Defect Engineering as Exceptional Electrode Materials for Hybrid Supercapacitor. Chemistry - A European Journal, 2021, 27, 8337-8343.	1.7	20
54	A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy, 2021, 83, 105845.	8.2	81

#	Article	IF	CITATIONS
55	Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Materials Today, 2021, 45, 54-61.	8.3	34
56	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	5.2	51
57	Piezoelectric Textiles: Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170136.	7.8	6
58	Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule, 2021, 5, 1391-1431.	11.7	261
59	Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy, 2021, 85, 106007.	8.2	36
60	Triboelectric Nanogenerators for Selfâ€Powered Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100975.	3.9	64
61	Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors, 2021, 11, 245.	2.3	75
62	A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy, 2021, 85, 106021.	8.2	55
63	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2101262.	11.1	217
64	Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano, 2021, 15, 13178-13187.	7.3	128
65	Learning from nature for healthcare, energy, and environment. Innovation(China), 2021, 2, 100135.	5.2	11
66	Ambulatory Cardiovascular Monitoring Via a Machineâ€Learningâ€Assisted Textile Triboelectric Sensor. Advanced Materials, 2021, 33, e2104178.	11.1	167
67	Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy, 2021, 86, 106074.	8.2	43
68	A non-printed integrated-circuit textile for wireless theranostics. Nature Communications, 2021, 12, 4876.	5.8	76
69	Advances in Triboelectric Nanogenerators for Selfâ€Powered Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2105169.	7.8	54
70	Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting. ACS Applied Energy Materials, 2021, 4, 11204-11214.	2.5	21
71	A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosensors and Bioelectronics, 2021, 187, 113329.	5.3	83
72	Giant magnetoelastic effect in soft systems for bioelectronics. Nature Materials, 2021, 20, 1670-1676.	13.3	175

#	Article	IF	CITATIONS
73	Triboelectric nanogenerators for self-powered drug delivery. Trends in Chemistry, 2021, 3, 765-778.	4.4	39
74	A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Materials Today Energy, 2021, 22, 100867.	2.5	19
75	Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends in Biotechnology, 2021, 39, 1078-1092.	4.9	96
76	Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 2021, 89, 106321.	8.2	151
77	Electrospinning nanofibers and nanomembranes for oil/water separation. Journal of Materials Chemistry A, 2021, 9, 21659-21684.	5.2	121
78	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
79	Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter, 2021, 4, 3725-3740.	5.0	94
80	MoSe ₂ Nanoflowers for Highly Efficient Industrial Wastewater Treatment with Zero Discharge. Advanced Science, 2021, 8, e2102857.	5.6	16
81	Wearable Ultrahigh Current Power Source Based on Giant Magnetoelastic Effect in Soft Elastomer System. ACS Nano, 2021, 15, 20582-20589.	7.3	43
82	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	5.8	150
83	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
84	Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano, 2021, 15, 18633-18646.	7.3	53
85	Advances in 4Dâ€printed physiological monitoring sensors. Exploration, 2021, 1, .	5.4	25
86	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	8.2	172
87	3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano, 2020, 14, 1520-1532.	7.3	151
88	A self-powered solar-blind photodetector with large <i>V</i> _{oc} enhancing performance based on the PEDOT:PSS/Ga ₂ O ₃ organic–inorganic hybrid heterojunction. Journal of Materials Chemistry C, 2020, 8, 1292-1300.	2.7	94
89	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 2773-2782.	4.0	17
90	Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 2020, 77, 105303.	8.2	206

#	Article	IF	CITATIONS
91	Smart Insole for Robust Wearable Biomechanical Energy Harvesting in Harsh Environments. ACS Nano, 2020, 14, 14126-14133.	7.3	107
92	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	10.2	97
93	Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry, 2020, 8, 577327.	1.8	45
94	Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano, 2020, 14, 9282-9319.	7.3	89
95	Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Physical Science, 2020, 1, 100142.	2.8	130
96	Low-Cost and Nature-Friendly Hierarchical Porous Carbon for Enhanced Capacitive Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 7246-7250.	2.5	22
97	Optimized CNT-PDMS Flexible Composite for Attachable Health-Care Device. Sensors, 2020, 20, 4523.	2.1	37
98	Hollow IrCo Nanoparticles for High-Performance Overall Water Splitting in an Acidic Medium. ACS Applied Nano Materials, 2020, 3, 11916-11922.	2.4	16
99	A chemically self-charging aqueous zinc-ion battery. Nature Communications, 2020, 11, 2199.	5.8	221
100	A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy, 2020, 74, 104941.	8.2	193
101	Largely boosted methanol electrooxidation using ionic liquid/PdCu aerogels <i>via</i> interface engineering. Materials Horizons, 2020, 7, 2407-2413.	6.4	36
102	A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendriteâ€Free Sodiumâ€Metal Electrodes. Angewandte Chemie - International Edition, 2020, 59, 16705-16711.	7.2	138
103	A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendriteâ€Free Sodiumâ€Metal Electrodes. Angewandte Chemie, 2020, 132, 16848.	1.6	11
104	Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosensors and Bioelectronics, 2020, 155, 112064.	5.3	233
105	Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics. Matter, 2020, 2, 1260-1269.	5.0	204
106	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
107	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	13.1	513
108	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	8.2	70

#	Article	IF	CITATIONS
109	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	4.5	231
110	Eco-Friendly Synthesis of Self-Supported N-Doped Sb ₂ S ₃ -Carbon Fibers with High Atom Utilization and Zero Discharge for Commercial Full Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6897-6906.	2.5	51
111	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	7.3	88
112	An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Materials, 2020, 28, 82-90.	9.5	109
113	In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy, 2020, 71, 104653.	8.2	149
114	A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter, 2020, 2, 896-907.	5.0	310
115	Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosensors and Bioelectronics, 2020, 154, 112078.	5.3	130
116	Single-atom catalysts boost nitrogen electroreduction reaction. Materials Today, 2020, 38, 99-113.	8.3	52
117	Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection. Nanomaterials, 2020, 10, 727.	1.9	17
118	Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano, 2020, 14, 6067-6075.	7.3	271
119	Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting. Nano Letters, 2020, 20, 3791-3797.	4.5	154
120	Promoting Energy Efficiency via a Selfâ€Adaptive Evaporative Cooling Hydrogel. Advanced Materials, 2020, 32, e1907307.	11.1	151
121	(Invited) Smart Textiles Towards Sustainable and Pervasive Energy Future. ECS Meeting Abstracts, 2020, MA2020-02, 1983-1983.	0.0	1
122	Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation. Research, 2020, 2020, 7158953.	2.8	67
123	Flexible Weaving Constructed Selfâ€Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure. Advanced Functional Materials, 2019, 29, 1806388.	7.8	297
124	Keystroke Dynamics Identification Based on Triboelectric Nanogenerator for Intelligent Keyboard Using Deep Learning Method. Advanced Materials Technologies, 2019, 4, 1800167.	3.0	57
125	A Selfâ€Healing Integrated Allâ€inâ€One Zincâ€ion Battery. Angewandte Chemie - International Edition, 2019, 58, 4313-4317.	7.2	311
126	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289

#	Article	IF	CITATIONS
127	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	15.6	773
128	Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443.	4.6	64
129	Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019, 62, 533-548.	4.2	136
130	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	5.8	64
131	Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. Nano Energy, 2019, 60, 144-152.	8.2	34
132	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nature Communications, 2019, 10, 5810.	5.8	80
133	Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon, 2019, 141, 400-416.	5.4	268
134	Largeâ€Area Reduced Graphene Oxide Composite Films for Flexible Asymmetric Sandwich and Microsized Supercapacitors. Advanced Functional Materials, 2018, 28, 1707247.	7.8	103
135	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	11.5	370
136	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	11.1	249
137	A Universal Method to Engineer Metal Oxide–Metal–Carbon Interface for Highly Efficient Oxygen Reduction. ACS Nano, 2018, 12, 3042-3051.	7.3	125
138	Largeâ€5cale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Selfâ€Powered Sleeping Monitoring. Advanced Functional Materials, 2018, 28, 1704112.	7.8	339
139	pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. Nanomaterials, 2018, 8, 952.	1.9	51
140	Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41070-41075.	4.0	136
141	Tuning Cu/Cu ₂ O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. Angewandte Chemie - International Edition, 2018, 57, 15415-15419.	7.2	175
142	Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2018, 2, 1857-1865.	11.7	132
143	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. Advanced Materials, 2018, 30, e1802152.	11.1	362
144	In Situ Direct Method To Massively Prepare Hydrophilic Porous Carbide-Derived Carbons for High-Performance Supercapacitors. ACS Applied Energy Materials, 2018, 1, 3544-3553.	2.5	45

#	Article	IF	CITATIONS
145	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	11.1	166
146	Progress in triboelectric nanogenerators as self-powered smart sensors. Journal of Materials Research, 2017, 32, 1628-1646.	1.2	150
147	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional Materials, 2017, 27, 1604639.	7.8	83
148	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
149	Phosphorusâ€Based Materials as the Anode for Sodiumâ€lon Batteries. Small Methods, 2017, 1, 1700216.	4.6	98
150	Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 2017, 8, 496.	5.8	280
151	Stretchable Lithiumâ€ion Batteries Enabled by Deviceâ€5caled Wavy Structure and Elasticâ€5ticky Separator. Advanced Energy Materials, 2017, 7, 1701076.	10.2	158
152	Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano, 2017, 11, 8830-8837.	7.3	400
153	High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. Journal of Materials Chemistry A, 2017, 5, 15008-15016.	5.2	44
154	Functional Nanomaterials for Sustainable Energy Technologies. Journal of Nanomaterials, 2016, 2016, 1-2.	1.5	5
155	Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source. Journal of Nanomaterials, 2016, 2016, 1-24.	1.5	53
156	A Wearable Allâ€Solid Photovoltaic Textile. Advanced Materials, 2016, 28, 263-269.	11.1	254
157	Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops. Advanced Materials, 2016, 28, 1650-1656.	11.1	334
158	Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Applied Physics Letters, 2016, 109, .	1.5	54
159	Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS Nano, 2016, 10, 6241-6247.	7.3	277
160	Triboelectrification. Green Energy and Technology, 2016, , 1-19.	0.4	12
161	Hybrid Cell Composed of Triboelectric Nanogenerator. Green Energy and Technology, 2016, , 307-350.	0.4	1
162	Applications in Self-powered Systems and Processes. Green Energy and Technology, 2016, , 351-398.	0.4	4

#	Article	IF	CITATIONS
163	Self-powered SensingSelf-Powered Sensing for Human-Machine InterfaceHuman-Machine Interface. Green Energy and Technology, 2016, , 401-429.	0.4	1
164	Self-powered Sensing for Vibration and Biomedical Monitoring. Green Energy and Technology, 2016, , 431-454.	0.4	2
165	Self-powered Sensing for Tracking Moving Objects. Green Energy and Technology, 2016, , 455-467.	0.4	1
166	Triboelectric Nanogenerator: Vertical Contact-Separation Mode. Green Energy and Technology, 2016, , 23-47.	0.4	40
167	Triboelectric Nanogenerator: Freestanding Triboelectric-Layer Mode. Green Energy and Technology, 2016, , 109-153.	0.4	15
168	Theoretical Modeling of Triboelectric Nanogenerators. Green Energy and Technology, 2016, , 155-183.	0.4	6
169	Figure-of-Merits for Quantifying Triboelectric Nanogenerators. Green Energy and Technology, 2016, , 185-204.	0.4	2
170	Harvesting Vibration Energy. Green Energy and Technology, 2016, , 237-257.	0.4	0
171	A dual-electrolyte based air-breathing regenerative microfluidic fuel cell with 1.76 V open-circuit-voltage and 0.74 V water-splitting voltage. Nano Energy, 2016, 27, 619-626.	8.2	52
172	Triboelectric Nanogenerator: Single-Electrode Mode. Green Energy and Technology, 2016, , 91-107.	0.4	21
173	Triboelectric Nanogenerator: Lateral Sliding Mode. Green Energy and Technology, 2016, , 49-90.	0.4	20
174	Self-powered Sensing for Chemical and Environmental Detection. Green Energy and Technology, 2016, , 469-489.	0.4	0
175	Harvesting Large-Scale Blue Energy. Green Energy and Technology, 2016, , 283-306.	0.4	3
176	Triboelectric Nanogenerators. Green Energy and Technology, 2016, , .	0.4	176
177	A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for Highâ€Performance Lithium–Sulfur Batteries with Unconventional Configurations. Advanced Materials, 2016, 28, 9629-9636.	11.1	308
178	Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano, 2016, 10, 7874-7881.	7.3	179
179	Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1, .	19.8	879
180	Reduced graphene oxide–polyethylene oxide hybrid films for toluene sensing at room temperature. RSC Advances, 2016, 6, 97840-97847.	1.7	41

#	Article	IF	CITATIONS
181	Triboelectrificationâ€Enabled Selfâ€Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991.	11.1	204
182	Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016, 45, 4340-4363.	18.7	480
183	One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. Journal of Power Sources, 2016, 315, 120-126.	4.0	118
184	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	8.2	132
185	A Selfâ€Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator. Advanced Functional Materials, 2015, 25, 2166-2174.	7.8	119
186	Highly Compressible and Allâ€Solidâ€State Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	11.1	217
187	A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock. Advanced Energy Materials, 2015, 5, 1501152.	10.2	174
188	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	7.3	135
189	Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy, 2015, 12, 278-286.	8.2	34
190	β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy and Environmental Science, 2015, 8, 887-896.	15.6	192
191	Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing. Applied Physics Letters, 2015, 106, .	1.5	51
192	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	11.1	487
193	Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing. ACS Nano, 2015, 9, 105-116.	7.3	239
194	Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331.	7.3	509
195	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16, 38-46.	8.2	255
196	A high-performance white-light-emitting-diodes based on nano-single crystal divanadates quantum dots. Scientific Reports, 2015, 5, 10460.	1.6	18
197	Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy and Environmental Science, 2015, 8, 2250-2282.	15.6	1,723
198	Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for Highâ€Efficiency Energyâ€Harvesting and Selfâ€Powered Sensing. Advanced Materials, 2015, 27, 2340-2347.	11.1	397

#	Article	IF	CITATIONS
199	Stretchableâ€Rubberâ€Based Triboelectric Nanogenerator and Its Application as Selfâ€Powered Body Motion Sensors. Advanced Functional Materials, 2015, 25, 3688-3696.	7.8	320
200	Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano, 2015, 9, 4236-4243.	7.3	419
201	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343.	7.3	111
202	Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy, 2015, 17, 10-16.	8.2	78
203	Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 2015, 14, 126-138.	8.2	574
204	Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301322.	10.2	280
205	3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Advanced Functional Materials, 2014, 24, 4090-4096.	7.8	263
206	Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 2014, 5, 3426.	5.8	734
207	Triboelectrification Based Motion Sensor for Human-Machine Interfacing. ACS Applied Materials & Interfaces, 2014, 6, 7479-7484.	4.0	162
208	Membraneâ€Based Selfâ€Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring. Advanced Functional Materials, 2014, 24, 5807-5813.	7.8	250
209	Case-Encapsulated Triboelectric Nanogenerator for Harvesting Energy from Reciprocating Sliding Motion. ACS Nano, 2014, 8, 3836-3842.	7.3	137
210	Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy, 2014, 9, 186-195.	8.2	268
211	Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification. Nano Letters, 2014, 14, 3208-3213.	4.5	405
212	Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano, 2014, 8, 6031-6037.	7.3	471
213	Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. ACS Nano, 2014, 8, 2649-2657.	7.3	390
214	Triboelectric Sensor for Self-Powered Tracking of Object Motion inside Tubing. ACS Nano, 2014, 8, 3843-3850.	7.3	142
215	A Shapeâ€Adaptive Thinâ€Filmâ€Based Approach for 50% Highâ€Efficiency Energy Generation Through Microâ€Grating Sliding Electrification. Advanced Materials, 2014, 26, 3788-3796.	11.1	415
216	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	7.3	331

#	Article	IF	CITATIONS
217	Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Selfâ€Powered Acceleration Sensor. Advanced Functional Materials, 2014, 24, 1401-1407.	7.8	381
218	A hybrid energy cell for self-powered water splitting. Energy and Environmental Science, 2013, 6, 2429.	15.6	162
219	Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy, 2013, 2, 693-701.	8.2	250
220	Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2013, 2, 688-692.	8.2	292
221	Harmonicâ€Resonatorâ€Based Triboelectric Nanogenerator as a Sustainable Power Source and a Selfâ€Powered Active Vibration Sensor. Advanced Materials, 2013, 25, 6094-6099.	11.1	672
222	Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System. ACS Nano, 2013, 7, 9213-9222.	7.3	667
223	Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS Nano, 2013, 7, 7342-7351.	7.3	523
224	Cylindrical Rotating Triboelectric Nanogenerator. ACS Nano, 2013, 7, 6361-6366.	7.3	249
225	Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy, 2013, 2, 856-862.	8.2	337
226	Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6, 880-886.	5.8	209
227	Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System. ACS Nano, 2013, 7, 9461-9468.	7.3	524
228	Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions. ACS Nano, 2013, 7, 3713-3719.	7.3	538
229	Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy and Environmental Science, 2013, 6, 1744.	15.6	129
230	Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters, 2013, 13, 2282-2289.	4.5	442
231	Harvesting Energy from the Natural Vibration of Human Walking. ACS Nano, 2013, 7, 11317-11324.	7.3	448
232	Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-Phototronic Effect. Nano Letters, 2013, 13, 607-613.	4.5	209
233	A Selfâ€Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie - International Edition, 2013, 52, 5065-5069.	7.2	323
234	Enhanced Performance of a ZnO Nanowireâ€Based Selfâ€Powered Glucose Sensor by Piezotronic Effect. Advanced Functional Materials, 2013, 23, 5868-5874.	7.8	174

#	Article	IF	CITATIONS
235	A Leavening Strategy to Prepare Reduced Graphene Oxide Foams. Advanced Materials, 2012, 24, 4144-4150.	11.1	765
236	A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care. SSRN Electronic Journal, 0, , .	0.4	2