
Silvia G Acinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4042262/publications.pdf Version: 2024-02-01

SILVIA C. ACINIAS

#	Article	IF	CITATIONS
1	A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Molecular Ecology Resources, 2023, 23, 16-40.	2.2	29
2	Prevalence of Heterotrophic Methylmercury Detoxifying Bacteria across Oceanic Regions. Environmental Science & Technology, 2022, 56, 3452-3461.	4.6	9
3	Unifying the known and unknown microbial coding sequence space. ELife, 2022, 11, .	2.8	41
4	Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science, 2022, 376, 156-162.	6.0	124
5	The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Research, 2022, 50, W516-W526.	6.5	26
6	Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics, 2022, 2, 100123.	3.0	70
7	Biosynthetic potential of the global ocean microbiome. Nature, 2022, 607, 111-118.	13.7	128
8	Priorities for ocean microbiome research. Nature Microbiology, 2022, 7, 937-947.	5.9	27
9	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 2021, 4, 604.	2.0	107
10	Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nature Communications, 2021, 12, 4160.	5.8	58
11	mTAGs: taxonomic profiling using degenerate consensus reference sequences of ribosomal RNA genes. Bioinformatics, 2021, 38, 270-272.	1.8	5
12	Environmental vulnerability of the global ocean epipelagic plankton community interactome. Science Advances, 2021, 7, .	4.7	54
13	Macroscale patterns of oceanic zooplankton composition and size structure. Scientific Reports, 2021, 11, 15714.	1.6	24
14	Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature Microbiology, 2021, 6, 1561-1574.	5.9	57
15	Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiology, 2020, 20, 207.	1.3	27
16	Sequencing effort dictates gene discovery in marine microbial metagenomes. Environmental Microbiology, 2020, 22, 4589-4603.	1.8	13
17	Tara Oceans: towards global ocean ecosystems biology. Nature Reviews Microbiology, 2020, 18, 428-445.	13.6	227
18	A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Molecular Ecology Resources, 2020, 20, 718-731.	2.2	70

#	Article	IF	CITATIONS
19	Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome, 2020, 8, 55.	4.9	154
20	Mesonia oceanica sp. nov., isolated from oceans during the Tara oceans expedition, with a preference for mesopelagic waters. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4329-4338.	0.8	11
21	Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12, 748-754.	5.4	141
22	Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell, 2019, 179, 1068-1083.e21.	13.5	268
23	Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell, 2019, 179, 1084-1097.e21.	13.5	271
24	Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Molecular Ecology, 2019, 28, 1930-1945.	2.0	41
25	Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell, 2019, 177, 1109-1123.e14.	13.5	541
26	Community‣evel Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochemical Cycles, 2019, 33, 391-419.	1.9	76
27	Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Molecular Ecology, 2019, 28, 2846-2859.	2.0	31
28	Scaling of species distribution explains the vast potential marine prokaryote diversity. Scientific Reports, 2019, 9, 18710.	1.6	8
29	UCYNâ€A3, a newly characterized open ocean sublineage of the symbiotic N ₂ â€fixing cyanobacterium <i>Candidatus</i> Atelocyanobacterium thalassa. Environmental Microbiology, 2019, 21, 111-124.	1.8	31
30	Primer Design for an Accurate View of Picocyanobacterial Community Structure by Using High-Throughput Sequencing. Applied and Environmental Microbiology, 2019, 85, .	1.4	9
31	Light color acclimation is a key process in the global ocean distribution of <i>Synechococcus cyanobacteria</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2010-E2019.	3.3	91
32	Large-scale ocean connectivity and planktonic body size. Nature Communications, 2018, 9, 142.	5.8	102
33	Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nature Communications, 2017, 8, 15892.	5.8	165
34	Phenotypic plasticity in freshwater picocyanobacteria. Environmental Microbiology, 2017, 19, 1120-1133.	1.8	31
35	A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nature Microbiology, 2017, 2, 1350-1357.	5.9	74
36	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	2.4	147

#	Article	IF	CITATIONS
37	Exploring Microdiversity in Novel Kordia sp. (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes. Frontiers in Microbiology, 2017, 8, 1317.	1.5	7
38	Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME Journal, 2016, 10, 2946-2957.	4.4	82
39	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 2016, 537, 689-693.	13.7	629
40	Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nature Communications, 2016, 7, 11071.	5.8	72
41	Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3365-74.	3.3	159
42	Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532, 465-470.	13.7	670
43	Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis. ISME Journal, 2016, 10, 693-706.	4.4	76
44	Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. ISME Journal, 2016, 10, 945-958.	4.4	171
45	Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME Journal, 2016, 10, 596-608.	4.4	191
46	Closing the gaps on the viral photosystemâ€ <scp>I</scp> â€ <i>psa<scp>DCAB</scp></i> gene organization. Environmental Microbiology, 2015, 17, 5100-5108.	1.8	7
47	Deep sequencing of amplified <scp><i>P</i></scp> <i>rasinovirus</i> and host green algal genes from an <scp>I</scp> ndian <scp>O</scp> cean transect reveals interacting trophic dependencies and new genotypes. Environmental Microbiology Reports, 2015, 7, 979-989.	1.0	8
48	Particleâ€association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Molecular Ecology, 2015, 24, 5692-5706.	2.0	113
49	Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea. PLoS ONE, 2015, 10, e0114829.	1.1	13
50	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	6.0	842
51	Patterns and ecological drivers of ocean viral communities. Science, 2015, 348, 1261498.	6.0	617
52	Structure and function of the global ocean microbiome. Science, 2015, 348, 1261359.	6.0	2,137
53	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	6.0	1,551
54	Environmental characteristics of Agulhas rings affect interocean plankton transport. Science, 2015, 348, 1261447.	6.0	158

#	Article	IF	CITATIONS
55	Prokaryotic functional gene diversity in the sunlit ocean: Stumbling in the dark. Current Opinion in Microbiology, 2015, 25, 33-39.	2.3	24
56	Validation of a new catalysed reporter deposition–fluorescence <i>in situ</i> hybridization probe for the accurate quantification of marine <scp><i>B</i></scp> <i>acteroidetes</i> populations. Environmental Microbiology, 2015, 17, 3557-3569.	1.8	21
57	Metagenomic <scp>16S rDNA I</scp> llumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, 16, 2659-2671.	1.8	291
58	The phylogenetic and ecological context of cultured and whole genome-sequenced planktonic bacteria from the coastal NW Mediterranean Sea. Systematic and Applied Microbiology, 2014, 37, 216-228.	1.2	22
59	Spatial and temporal variability among marine Bacteroidetes populations in the NW Mediterranean Sea. Systematic and Applied Microbiology, 2014, 37, 68-78.	1.2	33
60	Ecology of marine Bacteroidetes: a comparative genomics approach. ISME Journal, 2013, 7, 1026-1037.	4.4	614
61	Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11463-11468.	3.3	328
62	Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME Journal, 2013, 7, 1678-1695.	4.4	185
63	Patterns and architecture of genomic islands in marine bacteria. BMC Genomics, 2012, 13, 347.	1.2	84
64	Evaluation of Marine Bacteroidetes-Specific Primers for Microbial Diversity and Dynamics Studies. Microbial Ecology, 2012, 64, 1047-1055.	1.4	38
65	A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 2011, 9, e1001177.	2.6	353
66	Transcriptome Fingerprinting Analysis: An Approach to Explore Gene Expression Patterns in Marine Microbial Communities. PLoS ONE, 2011, 6, e22950.	1.1	3
67	Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	43
68	Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquatic Microbial Ecology, 2010, 61, 221-233.	0.9	100
69	Phenotypic and genetic diversification of <i>Pseudanabaena</i> spp. (cyanobacteria). ISME Journal, 2009, 3, 31-46.	4.4	103
70	Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environmental Microbiology, 2008, 10, 174-188.	1.8	77
71	Evaluation of 23S rRNA PCR Primers for Use in Phylogenetic Studies of Bacterial Diversity. Applied and Environmental Microbiology, 2006, 72, 2221-2225.	1.4	124
72	Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiology Ecology, 2006, 24, 27-40.	1.3	123

#	Article	IF	CITATIONS
73	PCR-Induced Sequence Artifacts and Bias: Insights from Comparison of Two 16S rRNA Clone Libraries Constructed from the Same Sample. Applied and Environmental Microbiology, 2005, 71, 8966-8969.	1.4	522
74	Divergence and Redundancy of 16S rRNA Sequences in Genomes with Multiple rrn Operons. Journal of Bacteriology, 2004, 186, 2629-2635.	1.0	520
75	Fine-scale phylogenetic architecture of a complex bacterial community. Nature, 2004, 430, 551-554.	13.7	475
76	A(r)Ray of Hope in Analysis of the Function and Diversity of Microbial Communities. Biological Bulletin, 2003, 204, 196-199.	0.7	18
77	Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environmental Microbiology, 2002, 4, 42-50.	1.8	79
78	Archaeal Biodiversity in Crystallizer Ponds from a Solar Saltern: Culture versus PCR. Microbial Ecology, 2001, 41, 12-19.	1.4	113
79	Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. Journal of Microbiological Methods, 1999, 36, 55-64.	0.7	214
80	Diversity of Free-Living and Attached Bacteria in Offshore Western Mediterranean Waters as Depicted by Analysis of Genes Encoding 16S rRNA. Applied and Environmental Microbiology, 1999, 65, 514-522.	1.4	319
81	Heterotrophic bacteria, activity and bacterial diversity in two coastal lagoons as detected by culture and 16S rRNA genes PCR amplification and partial sequencing. Hydrobiologia, 1996, 329, 3-17.	1.0	3
82	Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA. Hydrobiologia, 1996, 329, 19-31.	1.0	54
83	Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology, 1995, 17, 247-255.	1.3	47
84	Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology, 1995, 17, 247-255.	1.3	107