J Carlos Rodriguez-Cabello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4042170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€assembling systems comprising intrinsically disordered protein polymers like elastinâ€like recombinamers. Journal of Peptide Science, 2022, 28, e3362.	0.8	8
2	The Incorporation of Etanercept into a Porous Tri-Layer Scaffold for Restoring and Repairing Cartilage Tissue. Pharmaceutics, 2022, 14, 282.	2.0	6
3	Spatially Heterogeneous Tubular Scaffolds for In Situ Heart Valve Tissue Engineering Using Melt Electrowriting. Advanced Functional Materials, 2022, 32, .	7.8	39
4	Disordered Protein Stabilization by Co-Assembly of Short Peptides Enables Formation of Robust Membranes. ACS Applied Materials & Interfaces, 2022, 14, 464-473.	4.0	8
5	Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules, 2022, 12, 3.	1.8	6
6	Charge Density as a Molecular Modulator of Nanostructuration in Intrinsically Disordered Protein Polymers. Biomacromolecules, 2021, 22, 158-170.	2.6	9
7	Biocasting of an elastin-like recombinamer and collagen bi-layered model of the tunica adventitia and external elastic lamina of the vascular wall. Biomaterials Science, 2021, 9, 3860-3874.	2.6	4
8	Protein-Based Films Functionalized with a Truncated Antimicrobial Peptide Sequence Display Broad Antimicrobial Activity. ACS Biomaterials Science and Engineering, 2021, 7, 451-461.	2.6	9
9	Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Science Translational Medicine, 2021, 13, .	5.8	56
10	Elastin-like hydrogel stimulates angiogenesis in a severe model of critical limb ischemia (CLI): An insight into the glyco-host response. Biomaterials, 2021, 269, 120641.	5.7	14
11	Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. European Polymer Journal, 2021, 146, 110269.	2.6	3
12	The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers, 2021, 13, 907.	2.0	5
13	An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability. Biofabrication, 2021, 13, 035027.	3.7	16
14	Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers, 2021, 13, 2114.	2.0	18
15	Fibrous Scaffolds From Elastin-Based Materials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652384.	2.0	12
16	Combining tunable proteolytic sequences and a VEGF-mimetic peptide for the spatiotemporal control of angiogenesis within Elastin-Like Recombinamer scaffolds. Acta Biomaterialia, 2021, 130, 149-160.	4.1	13
17	Trends in the Development of Tailored Elastin-Like Recombinamer–Based Porous Biomaterials for Soft and Hard Tissue Applications. Frontiers in Materials, 2021, 7, .	1.2	20
18	Genetically engineered elastin-like recombinamers with sequence-based molecular stabilization as advanced bioinks for 3D bioprinting. Applied Materials Today, 2020, 18, 100500.	2.3	24

#	Article	IF	CITATIONS
19	Design, construction, and biological testing of an implantable porous trilayer scaffold for repairing osteoarthritic cartilage. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 355-368.	1.3	4
20	A double safety lock tumor-specific device for suicide gene therapy in breast cancer. Cancer Letters, 2020, 470, 43-53.	3.2	10
21	Complex Morphogenesis by a Model Intrinsically Disordered Protein. Small, 2020, 16, e2005191.	5.2	10
22	Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides. Biomacromolecules, 2020, 21, 4043-4052.	2.6	17
23	Application of Plasma Electrolytic Oxidation Coating on Powder Metallurgy Ti-6Al-4V for Dental Implants. Metals, 2020, 10, 1167.	1.0	10
24	Controlled Production of Elastin-like Recombinamer Polymer-Based Membranes at a Liquid–Liquid Interface by Click Chemistry. Biomacromolecules, 2020, 21, 4149-4158.	2.6	1
25	Elastin-Like Recombinamer Hydrogels for Improved Skeletal Muscle Healing Through Modulation of Macrophage Polarization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 413.	2.0	26
26	Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties. Biomaterials Science, 2020, 8, 3536-3548.	2.6	12
27	Interfacial Self-Assembly to Spatially Organize Graphene Oxide Into Hierarchical and Bioactive Structures. Frontiers in Materials, 2020, 7, .	1.2	4
28	Influence of the Thermodynamic and Kinetic Control of Selfâ€Assembly on the Microstructure Evolution of Silkâ€Elastinâ€Like Recombinamer Hydrogels. Small, 2020, 16, e2001244.	5.2	23
29	Elastinâ€Like Recombinamers: Deconstructing and Recapitulating the Functionality of Extracellular Matrix Proteins Using Recombinant Protein Polymers. Advanced Functional Materials, 2020, 30, 1909050.	7.8	29
30	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	5.8	42
31	Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections. Biomaterials Science, 2020, 8, 2866-2877.	2.6	41
32	Self-assembly of Janus Au:Fe ₃ O ₄ branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures. Nanoscale Advances, 2020, 2, 2525-2530.	2.2	10
33	Elastins-Based Antimicrobial Particles for Delivery of Bioactive Compounds. Methods in Molecular Biology, 2020, 2118, 29-43.	0.4	1
34	Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance. ACS Biomaterials Science and Engineering, 2019, 5, 4708-4716.	2.6	29
35	Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biology, 2019, 84, 111-126.	1.5	48
36	Correction to "Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance― ACS Biomaterials Science and Engineering, 2019, 5, 6319-6319.	2.6	0

#	Article	IF	CITATIONS
37	Layer-by-layer biofabrication of coronary covered stents with clickable elastin-like recombinamers. European Polymer Journal, 2019, 121, 109334.	2.6	10
38	Hydrophobic Cholesteryl Moieties Trigger Substrate Cell–Membrane Interaction of Elastin–Mimetic Protein Coatings in Vitro. ACS Omega, 2019, 4, 10818-10827.	1.6	3
39	An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. International Journal of Energy Production and Management, 2019, 6, 335-347.	1.9	26
40	Use of proteolytic sequences with different cleavage kinetics as a way to generate hydrogels with preprogrammed cell-infiltration patterns imparted over their given 3D spatial structure. Biofabrication, 2019, 11, 035008.	3.7	21
41	Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules, 2019, 20, 1996-2007.	2.6	19
42	A transferrin receptor-binding mucoadhesive elastin-like recombinamer: In vitro and in vivo characterization. Acta Biomaterialia, 2019, 88, 241-250.	4.1	5
43	Stimuli-Responsive Protein Fibers for Advanced Applications. , 2019, , 323-377.		2
44	Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. Journal of Materials Science: Materials in Medicine, 2019, 30, 30.	1.7	43
45	Small Caliber Compliant Vascular Grafts Based on Elastin-Like Recombinamers for in situ Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 340.	2.0	65
46	Bicyclic RGD peptides with high integrin <i>α</i> _v <i>β</i> ₃ and <i>α</i> ₅ <i>β</i> ₁ affinity promote cell adhesion on elastin-like recombinamers. Biomedical Materials (Bristol), 2019, 14, 035009.	1.7	16
47	A novel lipase-catalyzed method for preparing ELR-based bioconjugates. International Journal of Biological Macromolecules, 2019, 121, 752-759.	3.6	5
48	Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering. Acta Biomaterialia, 2018, 72, 137-149.	4.1	33
49	Bioactive scaffolds based on elastin-like materials for wound healing. Advanced Drug Delivery Reviews, 2018, 129, 118-133.	6.6	88
50	Macroporous click-elastin-like hydrogels for tissue engineering applications. Materials Science and Engineering C, 2018, 88, 140-147.	3.8	30
51	Biocompatibility of two model elastinâ€like recombinamerâ€based hydrogels formed through physical or chemical crossâ€linking for various applications in tissue engineering and regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1450-e1460.	1.3	32
52	Biocompatibility and immunogenicity of elastinâ€like recombinamer biomaterials in mouse models. Journal of Biomedical Materials Research - Part A, 2018, 106, 924-934.	2.1	13
53	A novel information criterion to elucidate a drug delivery mechanism from poly (acrylamide-co-2-hydroxyethyl methacrylate) reinforced with hydroxyapatite composite. Polymer, 2018, 158, 279-288.	1.8	2
54	Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules, 2018, 19, 4333-4347.	2.6	46

#	Article	IF	CITATIONS
55	Combining Catalystâ€Free Click Chemistry with Coaxial Electrospinning to Obtain Longâ€Term, Waterâ€Stable, Bioactive Elastinâ€Like Fibers for Tissue Engineering Applications. Macromolecular Bioscience, 2018, 18, e1800147.	2.1	5
56	Protein disorder–order interplay to guide the growth of hierarchical mineralized structures. Nature Communications, 2018, 9, 2145.	5.8	119
57	Tuning the Stiffness of Surfaces by Assembling Genetically Engineered Polypeptides with Tailored Amino Acid Sequence. Biomacromolecules, 2018, 19, 3401-3411.	2.6	6
58	Spatial control and cell adhesion selectivity on model gold surfaces grafted with elastin-like recombinamers. European Polymer Journal, 2018, 106, 19-29.	2.6	12
59	Production of bioactive hepcidin by recombinant DNA tagging with an elastin-like recombinamer. New Biotechnology, 2018, 46, 45-53.	2.4	19
60	PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 055010.	1.7	17
61	Elastin-like proteins: Molecular design for self-assembling. , 2018, , 49-78.		1
62	Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils. ACS Applied Materials & Interfaces, 2017, 9, 5838-5846.	4.0	31
63	Förster Resonance Energy Transfer-Paired Hydrogel Forming Silk-Elastin-Like Recombinamers by Recombinant Conjugation of Fluorescent Proteins. Bioconjugate Chemistry, 2017, 28, 828-835.	1.8	9
64	Biomimetic click assembled multilayer coatings exhibiting responsive properties. Materials Today Chemistry, 2017, 4, 150-163.	1.7	15
65	Human adipose derived stem cells are superior to human osteoblasts (HOB) in bone tissue engineering on a collagen-fibroin-ELR blend. Bioactive Materials, 2017, 2, 71-81.	8.6	21
66	Bone Regeneration Mediated by a Bioactive and Biodegradable Extracellular Matrix-Like Hydrogel Based on Elastin-Like Recombinamers. Tissue Engineering - Part A, 2017, 23, 1361-1371.	1.6	37
67	Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomedical Materials (Bristol), 2017, 12, 045011.	1.7	17
68	Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials, 2017, 135, 30-41.	5.7	44
69	Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1859-1873.	1.9	17
70	Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels. Journal of Materials Science: Materials in Medicine, 2017, 28, 115.	1.7	27
71	Chitosan-Recombinamer Layer-by-Layer Coatings for Multifunctional Implants. International Journal of Molecular Sciences, 2017, 18, 369.	1.8	47
72	Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization. Beilstein Journal of Nanotechnology, 2017, 8, 772-783.	1.5	12

#	Article	IF	CITATIONS
73	Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications. Biofabrication, 2016, 8, 045009.	3.7	26
74	3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine. Acta Biomaterialia, 2016, 45, 349-356.	4.1	22
75	Hybrid elastin-like recombinamer-fibrin gels: physical characterization and in vitro evaluation for cardiovascular tissue engineering applications. Biomaterials Science, 2016, 4, 1361-1370.	2.6	17
76	Coacervation of Elastinâ€Like Recombinamer Microgels. Macromolecular Rapid Communications, 2016, 37, 181-186.	2.0	13
77	Aggregation behaviour of biohybrid microgels from elastin-like recombinamers. Soft Matter, 2016, 12, 6240-6252.	1.2	9
78	Biocompatible ELR-Based Polyplexes Coated with MUC1 Specific Aptamers and Targeted for Breast Cancer Gene Therapy. Molecular Pharmaceutics, 2016, 13, 795-808.	2.3	31
79	Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers. RSC Advances, 2016, 6, 31225-31234.	1.7	17
80	Elastin-like polypeptides in drug delivery. Advanced Drug Delivery Reviews, 2016, 97, 85-100.	6.6	122
81	Recombinant Technology in the Development of Materials and Systems for Softâ€Tissue Repair. Advanced Healthcare Materials, 2015, 4, 2423-2455.	3.9	48
82	Elastin-like recombinamers with acquired functionalities for gene-delivery applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 3166-3178.	2.1	19
83	Exploring the Properties of Genetically Engineered Silkâ€Elastinâ€Like Protein Films. Macromolecular Bioscience, 2015, 15, 1698-1709.	2.1	22
84	Nanotechnological Approaches to Therapeutic Delivery Using Elastin-Like Recombinamers. Bioconjugate Chemistry, 2015, 26, 1252-1265.	1.8	21
85	Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. Polymer, 2015, 81, 37-44.	1.8	21
86	Development of Elastin-Like Recombinamer Films with Antimicrobial Activity. Biomacromolecules, 2015, 16, 625-635.	2.6	29
87	Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications. Colloids and Surfaces B: Biointerfaces, 2015, 127, 22-32.	2.5	48
88	Biocompatible elastin-like click gels: design, synthesis and characterization. Journal of Materials Science: Materials in Medicine, 2015, 26, 105.	1.7	38
89	Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials, 2015, 68, 42-53.	5.7	41
90	Amphiphilic Elastin-Like Block Co-Recombinamers Containing Leucine Zippers: Cooperative Interplay between Both Domains Results in Injectable and Stable Hydrogels. Biomacromolecules, 2015, 16, 3389-3398.	2.6	33

#	Article	IF	CITATIONS
91	Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nature Chemistry, 2015, 7, 897-904.	6.6	142
92	Biomolecular functionalization for enhanced cell–material interactions of poly(methyl) Tj ETQq0 0 0 rgBT /C	overlock 10 1.9	Tf 50,702 Td (
93	Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Density. ACS Applied Materials & amp; Interfaces, 2015, 7, 25784-25792.	4.0	37
94	Elastin-like recombinamer-covered stents: Towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomaterialia, 2015, 12, 146-155.	4.1	58
95	Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer. Biomaterials and Biomechanics in Bioengineering, 2015, 2, 47-59.	0.1	1
96	A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 114, 225-233.	2.5	32
97	A collagen-based corneal stroma substitute with micro-designed architecture. Biomaterials Science, 2014, 2, 318-329.	2.6	39
98	Effect of Surfactants on the Self-Assembly of a Model Elastin-like Block Corecombinamer: From Micelles to an Aqueous Two-Phase System. Langmuir, 2014, 30, 3432-3440.	1.6	18
99	Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like Corecombinamer with a Concomitant Dual Physical Gelation Process. Biomacromolecules, 2014, 15, 3781-3793.	2.6	77
100	Nanogel Formation from Dilute Solutions of Clickable Elastin-like Recombinamers and its Dependence on Temperature: Two Fractal Gelation Modes. ACS Applied Materials & Interfaces, 2014, 6, 14509-14515.	4.0	15
101	Bioactive membranes for bone regeneration applications: Effect of physical and biomolecular signals on mesenchymal stem cell behavior. Acta Biomaterialia, 2014, 10, 134-141.	4.1	48
102	Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane. Biomaterials, 2014, 35, 8339-8347.	5.7	63
103	The effect of NaCl on the self-assembly of elastin-like block co-recombinamers: Tuning the size of micelles and vesicles. Polymer, 2014, 55, 5314-5321.	1.8	22
104	Cellular uptake of multilayered capsules produced with natural and genetically engineered biomimetic macromolecules. Acta Biomaterialia, 2014, 10, 2653-2662.	4.1	29
105	Elastin-like recombinamer catalyst-free click gels: Characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomaterialia, 2014, 10, 2495-2505.	4.1	86
106	Hybrid Nanotopographical Surfaces Obtained by Biomimetic Mineralization of Statherinâ€Inspired Elastinâ€Like Recombinamers. Advanced Healthcare Materials, 2014, 3, 1638-1647.	3.9	29
107	High level expression and facile purification of recombinant silk-elastin-like polymers in auto induction shake flask cultures. AMB Express, 2013, 3, 11.	1.4	33
108	Biological and Bioinspired Micro- and Nanostructured Adhesives. , 2013, , 409-439.		10

#	Article	IF	CITATIONS
109	Immunomodulatory Nanoparticles from Elastin-Like Recombinamers: Single-Molecules for Tuberculosis Vaccine Development. Molecular Pharmaceutics, 2013, 10, 586-597.	2.3	48
110	Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 895-902.	1.7	37
111	Layer-by-Layer Film Growth Using Polysaccharides and Recombinant Polypeptides: A Combinatorial Approach. Journal of Physical Chemistry B, 2013, 117, 6839-6848.	1.2	31
112	Efficient Cell and Cell-Sheet Harvesting Based on Smart Surfaces Coated with a Multifunctional and Self-Organizing Elastin-Like Recombinamer. Biomacromolecules, 2013, 14, 1893-1903.	2.6	28
113	Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales. Biomacromolecules, 2013, 14, 2403-2410.	2.6	55
114	Enhanced Cell-Material Interactions through the Biofunctionalization of Polymeric Surfaces with Engineered Peptides. Biomacromolecules, 2013, 14, 2690-2702.	2.6	39
115	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	1.7	67
116	A low elastic modulus Tiâ€Nbâ€Hf alloy bioactivated with an elastinâ€like proteinâ€based polymer enhances osteoblast cell adhesion and spreading. Journal of Biomedical Materials Research - Part A, 2013, 101A, 819-826.	2.1	16
117	CHAPTER 19. Elastin-like Hydrogels and Self-assembled Nanostructures for Drug Delivery. RSC Smart Materials, 2013, , 180-198.	0.1	3
118	Nanostructured Thin Coatings from Chitosan and an Elastin-Like Recombinamer with Acute Stimuli-Responsive Behavior. Materials Science Forum, 2012, 730-732, 32-37.	0.3	1
119	A comparative study of cell behavior on different energetic and bioactive polymeric surfaces made from elastin-like recombinamers. Soft Matter, 2012, 8, 3239.	1.2	33
120	Phase Behavior of Elastin-Like Synthetic Recombinamers in Deep Eutectic Solvents. Biomacromolecules, 2012, 13, 2029-2036.	2.6	30
121	Temperature-Triggered Self-Assembly of Elastin-Like Block Co-Recombinamers:The Controlled Formation of Micelles and Vesicles in an Aqueous Medium. Biomacromolecules, 2012, 13, 293-298.	2.6	86
122	Synthesis of Genetically Engineered Protein Polymers (Recombinamers) as an Example of Advanced Self-Assembled Smart Materials. Methods in Molecular Biology, 2012, 811, 17-38.	0.4	59
123	Elastin-Based Nanoparticles for Delivery of Bone Morphogenetic Proteins. Methods in Molecular Biology, 2012, 906, 353-363.	0.4	16
124	Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter, 2011, 7, 6426.	1.2	31
125	Emerging applications of multifunctional elastin-like recombinamers. Nanomedicine, 2011, 6, 111-122.	1.7	63
126	Biomimetic Calcium Phosphate Mineralization with Multifunctional Elastin-Like Recombinamers. Biomacromolecules, 2011, 12, 1480-1486.	2.6	59

#	Article	IF	CITATIONS
127	Thermoresponsive multilayer films based on ionic elastin-like recombinamers. Soft Matter, 2011, 7, 9402.	1.2	11
128	Tunable Morphology and Structural Properties of Recombinant Silk-Elastinlike Biopolymers by Electrospinning. Biophysical Journal, 2011, 100, 369a.	0.2	1
129	Elastinâ€like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnology Journal, 2011, 6, 1174-1186.	1.8	77
130	A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1541-1554.	1.7	46
131	The influence of elastin-like recombinant polymer on the self-renewing potential of a 3D tissue equivalent derived from human lamina propria fibroblasts and oral epithelial cells. Biomaterials, 2011, 32, 5756-5764.	5.7	36
132	Layerâ€byâ€Layer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuliâ€Responsive Properties. Small, 2011, 7, 2640-2649.	5.2	97
133	Elastinâ€like recombinamers as substrates for retinal pigment epithelial cell growth. Journal of Biomedical Materials Research - Part A, 2011, 97A, 243-250.	2.1	37
134	Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. Journal of Controlled Release, 2010, 142, 312-318.	4.8	159
135	Fabrication of CdSeâ€Nanofibers with Potential for Biomedical Applications. Advanced Functional Materials, 2010, 20, 1011-1018.	7.8	30
136	Development of Biomimetic Chitosanâ€Based Hydrogels Using an Elastinâ€Like Polymer. Advanced Engineering Materials, 2010, 12, B37.	1.6	26
137	Gold Tailored Photosensitive Elastinâ€like Polymer: Synthesis of Temperature, pH and UVâ€vis Sensitive Probes. Macromolecular Rapid Communications, 2010, 31, 568-573.	2.0	19
138	One-pot synthesis of pH and temperature sensitive gold clusters mediated by a recombinant elastin-like polymer. European Polymer Journal, 2010, 46, 643-650.	2.6	17
139	Recombinamers: Combining Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological Applications. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 145-179.	0.6	9
140	Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter, 2010, 6, 1121.	1.2	47
141	<i>In Vitro</i> Characterization of a Collagen Scaffold Enzymatically Cross-Linked with a Tailored Elastin-like Polymer. Tissue Engineering - Part A, 2009, 15, 887-899.	1.6	68
142	Exploiting the Sequence of Naturally Occurring Elastin: Construction, Production and Characterization of a Recombinant Thermoplastic Protein-Based Polymer. Journal of Nano Research, 2009, 6, 133-145.	0.8	19
143	Stimuliâ€Responsive Thin Coatings Using Elastin‣ike Polymers for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3210-3218.	7.8	83
144	Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein. Nanoscale Research Letters, 2009, 4, 1247-1253.	3.1	31

#	Article	IF	CITATIONS
145	"Recombinamers―as advanced materials for the post-oil age. Polymer, 2009, 50, 5159-5169.	1.8	114
146	Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials, 2009, 30, 5417-5426.	5.7	48
147	Synthesis and Characterization of Macroporous Thermosensitive Hydrogels from Recombinant Elastin-Like Polymers. Biomacromolecules, 2009, 10, 3015-3022.	2.6	84
148	Influence of the Amino-Acid Sequence on the Inverse Temperature Transition of Elastin-Like Polymers. Biophysical Journal, 2009, 97, 312-320.	0.2	99
149	Proteolytic Enzyme Engineering: A Tool for Wool. Biomacromolecules, 2009, 10, 1655-1661.	2.6	34
150	3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers. Soft Matter, 2009, 5, 1591.	1.2	32
151	Genetically Engineered Elastin-Like Polymer as a Substratum to Culture Cells from the Ocular Surface. Current Eye Research, 2009, 34, 48-56.	0.7	54
152	Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 269-286.	1.9	78
153	Effect of NaCl on the Exothermic and Endothermic Components of the Inverse Temperature Transition of a Model Elastin-like Polymer. Biomacromolecules, 2007, 8, 354-358.	2.6	93
154	NMR study of the cooperative behavior of thermotropic model polypeptides. Polymer International, 2007, 56, 186-194.	1.6	2
155	Protein-Based Smart Polymers. , 2007, , 177-209.		1
156	Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers. Nanomedicine, 2006, 1, 267-280.	1.7	29
157	Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications. Biotechnology Letters, 2006, 28, 687-695.	1.1	57
158	Biocompatibility of elastin-like polymer poly(VPAVG) microparticles:in vitro andin vivo studies. Journal of Biomedical Materials Research - Part A, 2006, 78A, 343-351.	2.1	86
159	Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Progress in Polymer Science, 2005, 30, 1119-1145.	11.8	87
160	Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. Journal of Controlled Release, 2005, 102, 113-122.	4.8	211
161	Genetic Engineering of Protein-Based Polymers: The Example of Elastinlike Polymers. Advances in Polymer Science, 2005, , 119-167.	0.4	42
162	Role of Water in Structural Changes of Poly(AVGVP) and Poly(GVGVP) Studied by FTIR and Raman Spectroscopy and ab Initio Calculations. Biomacromolecules, 2005, 6, 697-706.	2.6	64

#	Article	IF	CITATIONS
163	Smart Elastin-like Polymers. Advances in Experimental Medicine and Biology, 2004, 553, 45-57.	0.8	16
164	Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. Journal of Materials Science: Materials in Medicine, 2004, 15, 479-484.	1.7	186
165	Endothermic and exothermic components of an inverse temperature transition for hydrophobic association by TMDSC. Chemical Physics Letters, 2004, 388, 127-131.	1.2	42
166	Effect of modified ?, ?, and ?-cyclodextrins on the thermo-responsive behavior of the elastin-like polymer, poly(VPGVG). Carbohydrate Polymers, 2004, 57, 293-297.	5.1	6
167	Nanopore Formation by Self-Assembly of the Model Genetically Engineered Elastin-like Polymer [(VPGVG)2(VPGEG)(VPGVG)2]15. Journal of the American Chemical Society, 2004, 126, 13212-13213.	6.6	85
168	Influence of the Molecular Weight on the Inverse Temperature Transition of a Model Genetically Engineered Elastin-like pH-Responsive Polymer. Macromolecules, 2004, 37, 3396-3400.	2.2	97
169	Role of hydration in the phase transition of polypeptides investigated by NMR and Raman spectroscopy. Macromolecular Symposia, 2004, 205, 143-150.	0.4	5
170	Structure and Dynamics of Two Elastin-like Polypentapeptides Studied by NMR Spectroscopy. Biomacromolecules, 2003, 4, 589-601.	2.6	47
171	Thermal Behavior and Kinetic Analysis of the Chain Unfolding and Refolding and of the Concomitant Nonpolar Solvation and Desolvation of Two Elastin-like Polymers. Macromolecules, 2003, 36, 8470-8476.	2.2	75
172	Temperature Induced Conformational Transitions of Elastin-Like Polypentapeptides Studied by Raman and NMR Spectroscopy. Spectroscopy, 2002, 16, 251-255.	0.8	6
173	Novel Photoresponsivep-Phenylazobenzene Derivative of an Elastin-like Polymer with Enhanced Control of Azobenzene Content and without pH Sensitiveness. Macromolecules, 2001, 34, 8072-8077.	2.2	47
174	Raman spectroscopy of secondary structure of elastinlike polymer poly(GVGVP). Biopolymers, 2001, 62, 150-157.	1.2	8
175	Effect of α-, β- and γ-Cyclodextrins on the Inverse Temperature Transition of the Bioelastic Thermo-Responsive Polymer Poly(VPGVG). Macromolecular Chemistry and Physics, 2001, 202, 3027-3034.	1.1	13
176	Differential scanning calorimetry study of the hydrophobic hydration of the elastin-based polypentapeptide, poly(VPGVG), from deficiency to excess of water. Biopolymers, 2000, 54, 282-288.	1.2	65
177	Comparative study of the crystalline morphology present in isotropic and uniaxially stretched "conventional―and metallocene polyethylenes. Polymer, 2000, 41, 2999-3010.	1.8	40
178	Spiropyran Derivative of an Elastin-like Bioelastic Polymer:Â Photoresponsive Molecular Machine to Convert Sunlight into Mechanical Work. Macromolecules, 2000, 33, 9480-9482.	2.2	72
179	Influence of the stretching rate on the transition front structure of uniaxially deformed isotactic poly(propylene). Macromolecular Chemistry and Physics, 1996, 197, 3269-3284.	1.1	2
180	Rheo-optical FT-Raman study of uniaxially stretched poly(vinylidene fluoride). Macromolecular Chemistry and Physics, 1995, 196, 815-824.	1.1	7

#	Article	IF	CITATIONS
181	Rheo-optical Raman study of chain deformation in uniaxially stretched bulk polyethylene. Polymer, 1995, 36, 4233-4238.	1.8	21
182	A comparison between PAâ€FTTR and FTâ€Raman spectroscopies in the structural analysis of annealed injectedâ€moulded poly (ethylene terephthalate). Macromolecular Symposia, 1995, 94, 129-144.	0.4	2
183	Structural analysis of poly(ethylene terephthalate) reinforced with glass fibre: 1. A photoacoustic Fourier transform infra-red study. Polymer, 1994, 35, 514-518.	1.8	20
184	Fourier transform Raman study of the conformers in poly(ethylene terephthalate). Journal of Raman Spectroscopy, 1994, 25, 335-344.	1.2	46
185	Fourier transform Raman study of glass-fibre-reinforced poly(ethylene terephthalate). Journal of Raman Spectroscopy, 1994, 25, 345-351.	1.2	6
186	Structural analysis of injection-moulded semicrystalline polymers by Fourier-transform infra-red spectroscopy with photoacoustic detection and differential scanning calorimetry: 2. Polyamide-6,6. Polymer, 1994, 35, 2321-2328.	1.8	37
187	Raman mapping of the microdeformed zone produced by Vickers and Knoop microindentation techniques in poly(vinylidene fluoride). Polymer, 1993, 34, 1613-1619.	1.8	10
188	Structural analysis of injection-moulded semicrystalline polymers by Fourier transform infra-red spectroscopy with photoacoustic detection and differential scanning calorimetry: 1. Poly(ethylene) Tj ETQq0 0 0	rg B ∎/Ov	erloidik 10 Tf 5
189	Micro-Raman mapping of the transition region in the neck region of stretched poly(vinylidene) Tj ETQq1 1 0.784	314 rgBT 1.8	/Overlock 10
190	Improved Method for the Measurement of Chicken and Rat Pineal Serotonin N-Acetyltransferase Activity. Journal of Pineal Research, 1990, 9, 103-112.	3.4	6
191	Opposite Effects of EGTA and Neutral Surfactants on the Loss of Chicken Pineal Serotonin N-Acetyltransferase Activity. Journal of Pineal Research, 1990, 9, 243-249.	3.4	1
192	Effects of EGTA and calmodulin, neutral thiol proteinases and protein kinase C inhibitors on loss of chicken pineal serotoninn-acetyltransferase activity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1989, 159, 583-588.	0.7	9
193	Physical Properties of an Artificial Extracellular Matrix Based on a Crosslinked Elastin-Like Polymer. Materials Science Forum, 0, 587-588, 47-51.	0.3	0
194	Mesenchymal Stromal Cells Combined With Elastin-Like Recombinamers Increase Angiogenesis In Vivo After Hindlimb Ischemia. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
195	Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4