Jia Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041952/publications.pdf

Version: 2024-02-01

516561 526166 41 824 16 27 citations h-index g-index papers 41 41 41 753 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 136-143.	1.4	84
2	Assessing the ecological balance between supply and demand of blue-green infrastructure. Journal of Environmental Management, 2021, 288, 112454.	3.8	50
3	Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance. Remote Sensing, 2017, 9, 951.	1.8	49
4	Wavelength selection of the multispectral lidar system for estimating leaf chlorophyll and water contents through the PROSPECT model. Agricultural and Forest Meteorology, 2019, 266-267, 43-52.	1.9	48
5	Multispectral LiDAR Point Cloud Classification: A Two-Step Approach. Remote Sensing, 2017, 9, 373.	1.8	43
6	Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135, 74-83.	4.9	43
7	Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification. Sensors, 2015, 15, 21989-22002.	2.1	41
8	Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Scientific Reports, 2017, 7, 40362.	1.6	36
9	Estimating leaf chlorophyll status using hyperspectral lidar measurements by PROSPECT model inversion. Remote Sensing of Environment, 2018, 212, 1-7.	4.6	36
10	A new waveform decomposition method for multispectral LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 40-49.	4.9	32
11	Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data. Remote Sensing, 2016, 8, 526.	1.8	30
12	Developing a temporally accurate air temperature dataset for Mainland China. Science of the Total Environment, 2020, 706, 136037.	3.9	30
13	Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Optics Express, 2017, 25, 3743.	1.7	27
14	Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Scientific Reports, 2016, 6, 28787.	1.6	23
15	Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength. Spectroscopy Letters, 2016, 49, 263-267.	0.5	19
16	Estimation of Multi-Species Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-Up Table and Gaussian Process Regression Methods. Sensors, 2020, 20, 2460.	2.1	18
17	Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. PLoS ONE, 2018, 13, e0191068.	1.1	17
18	Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Optics Express, 2019, 27, 3978.	1.7	16

#	Article	IF	Citations
19	True-Color Three-Dimensional Imaging and Target Classification Based on Hyperspectral LiDAR. Remote Sensing, 2019, 11, 1541.	1.8	15
20	Using HSI Color Space to Improve the Multispectral Lidar Classification Error Caused by Measurement Geometry. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 3567-3579.	2.7	15
21	Excitation Wavelength Analysis of Laser-Induced Fluorescence LiDAR for Identifying Plant Species. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 977-981.	1.4	14
22	Prediction of Maize Yield at the City Level in China Using Multi-Source Data. Remote Sensing, 2021, 13, 146.	1.8	14
23	Active 3D Imaging of Vegetation Based on Multi-Wavelength Fluorescence LiDAR. Sensors, 2020, 20, 935.	2.1	13
24	Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Optics Express, 2016, 24, 19354.	1.7	12
25	Analyzing the Effect of Fluorescence Characteristics on Leaf Nitrogen Concentration Estimation. Remote Sensing, 2018, 10, 1402.	1.8	11
26	Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum. Optics Express, 2020, 28, 18728.	1.7	11
27	Leaf pigment retrieval using the PROSAIL model: Influence of uncertainty in prior canopy-structure information. Crop Journal, 2022, 10, 1251-1263.	2.3	11
28	Vegetation identification based on characteristics of fluorescence spectral spatial distribution. RSC Advances, 2015, 5, 56932-56935.	1.7	10
29	Monitoring of Paddy Rice Varieties Based on the Combination of the Laser-Induced Fluorescence and Multivariate Analysis. Food Analytical Methods, 2017, 10, 2398-2403.	1.3	9
30	Color Restoration for Full-Waveform Multispectral LiDAR Data. Remote Sensing, 2020, 12, 593.	1.8	8
31	Potential of Fluorescence Index Derived from the Slope Characteristics of Laser-Induced Chlorophyll Fluorescence Spectrum for Rice Leaf Nitrogen Concentration Estimation. Applied Sciences (Switzerland), 2019, 9, 916.	1.3	6
32	Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative. Royal Society Open Science, 2020, 7, 191941.	1.1	6
33	Selection of the optimal bands of first-derivative fluorescence characteristics for leaf nitrogen concentration estimation. Applied Optics, 2019, 58, 5720.	0.9	6
34	Combined application of 3D spectral features from multispectral LiDAR for classification., 2017,,.		5
35	Leaf Biochemistry Parameters Estimation of Vegetation Using the Appropriate Inversion Strategy. Frontiers in Plant Science, 2020, $11,533$.	1.7	4
36	Optimized Estimation of Leaf Mass per Area with a 3D Matrix of Vegetation Indices. Remote Sensing, 2021, 13, 3761.	1.8	4

#	Article	IF	CITATIONS
37	Optimizing LUT-based inversion of leaf chlorophyll from hyperspectral lidar data: Role of cost functions and regulation strategies. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102602.	1.4	4
38	Effect of different regression algorithms on the estimating leaf parameters based on selected characteristic wavelengths by using the PROSPECT model. Applied Optics, 2019, 58, 9904.	0.9	2
39	Two-wavelength depolarization Mie Lidar for tropospheric aerosol measurements. , 2016, , .		1
40	The characterization of plant species using firstâ€derivative fluorescence spectra. Luminescence, 2017, 32, 348-352.	1.5	1
41	The application of time decay characteristics of laserâ€induced fluorescence in the classification of vegetation. Luminescence, 2017, 32, 17-21.	1.5	O