Michel C Crucifix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A decomposition approach to cyclostratigraphic signal processing. Earth-Science Reviews, 2022, 225, 103894.	4.0	2
2	Modelling evidence for late Eocene Antarctic glaciations. Earth and Planetary Science Letters, 2022, 586, 117532.	1.8	6
3	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	9.0	0
4	A review of orbital-scale monsoon variability and dynamics in East Asia during the Quaternary. Quaternary Science Reviews, 2022, 288, 107593.	1.4	13
5	Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos. Physics Reports, 2021, 902, 1-60.	10.3	39
6	Quantification and interpretation of the climate variability record. Global and Planetary Change, 2021, 197, 103399.	1.6	24
7	ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability. Earth System Dynamics, 2021, 12, 63-67.	2.7	3
8	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	9.0	0
9	Diverse Regional Sensitivity of Summer Precipitation in East Asia to Ice Volume, CO ₂ and Astronomical Forcing. Geophysical Research Letters, 2021, 48, e2020GL092005.	1.5	25
10	Survival of the Systems. Trends in Ecology and Evolution, 2021, 36, 333-344.	4.2	25
11	Earth's Complexity Is Non-Computable: The Limits of Scaling Laws, Nonlinearity and Chaos. Entropy, 2021, 23, 915.	1.1	4
12	Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 2021, 14, 550-558.	5.4	62
13	A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0. Geoscientific Model Development, 2021, 14, 6373-6401.	1.3	2
14	Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models. Climate Dynamics, 2020, 54, 1801-1818.	1.7	9
15	<i>Ï€</i> -theorem generalization of the ice-age theory. Earth System Dynamics, 2020, 11, 281-289.	2.7	4
16	Diverse manifestations of the mid-Pleistocene climate transition. Nature Communications, 2019, 10, 352.	5.8	118
17	ESD Ideas: Propagation of high-frequency forcing to ice age dynamics. Earth System Dynamics, 2019, 10, 257-260.	2.7	5
18	Quantifying age and model uncertainties in palaeoclimate data and dynamical climate models with a joint inferential analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180854.	1.0	1

MICHEL C CRUCIFIX

#	Article	IF	CITATIONS
19	Model evidence for a seasonal bias in Antarctic ice cores. Nature Communications, 2018, 9, 1361.	5.8	6
20	Bayesian Model Selection for the Glacial–Interglacial Cycle. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 25-54.	0.5	11
21	Is the glacial climate scale invariant?. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	2
22	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	3.3	1,832
23	A theory of Pleistocene glacial rhythmicity. Earth System Dynamics, 2018, 9, 1025-1043.	2.7	25
24	A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – PartÂ2: Extension to time–frequency analysis. Nonlinear Processes in Geophysics, 2018, 25, 175-200.	0.6	6
25	A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – PartÂ1: Frequency analysis. Nonlinear Processes in Geophysics, 2018, 25, 145-173.	0.6	12
26	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164
27	A simple rule to determine which insolation cycles lead to interglacials. Nature, 2017, 542, 427-432.	13.7	108
28	Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to <i>Reviews of Geophysics</i> . Reviews of Geophysics, 2017, 55, 860-863.	9.0	1
29	Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study. Climate Dynamics, 2017, 48, 2729-2749.	1.7	25
30	The BRIDGE HadCM3 family of climate models: HadCM3@BristolÂv1.0. Geoscientific Model Development, 2017, 10, 3715-3743.	1.3	188
31	Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past, 2017, 13, 1539-1571.	1.3	14
32	On the importance of centennial variability for ice ages. Past Global Change Magazine, 2017, 25, 152-153.	0.4	2
33	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	2.8	42
34	地çfã•「å§å‡çµã€ã,'è¾›ã†ã•ã¦é€fã,Œã¦ã"ã,‹. Nature Digest, 2016, 13, 32-34.	0.0	0
35	Earth's narrow escape from a big freeze. Nature, 2016, 529, 162-163.	13.7	1
36	Effects of Additive Noise on the Stability of Glacial Cycles. Springer INdAM Series, 2016, , 93-113.	0.4	2

MICHEL C CRUCIFIX

#	Article	IF	CITATIONS
37	Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography, 2015, 30, 439-455.	3.0	24
38	Global sensitivity analysis of the Indian monsoon during the Pleistocene. Climate of the Past, 2015, 11, 45-61.	1.3	21
39	Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach. Earth System Dynamics, 2015, 6, 205-224.	2.7	22
40	Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial–interglacial cycles. Physica D: Nonlinear Phenomena, 2015, 306, 25-33.	1.3	17
41	Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial. Climate of the Past, 2014, 10, 1645-1657.	1.3	12
42	Modelling the evolution of the Antarctic ice sheet since the last interglacial. Cryosphere, 2014, 8, 1347-1360.	1.5	31
43	The impact of astronomical forcing on the Late Devonian greenhouse climate. Clobal and Planetary Change, 2014, 120, 65-80.	1.6	43
44	Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study. Climate Dynamics, 2013, 40, 273-294.	1.7	58
45	Why could ice ages be unpredictable?. Climate of the Past, 2013, 9, 2253-2267.	1.3	38
46	Oscillators and relaxation phenomena in Pleistocene climate theory. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1140-1165.	1.6	131
47	Traditional and novel approaches to palaeoclimate modelling. Quaternary Science Reviews, 2012, 57, 1-16.	1.4	21
48	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	13.7	247
49	Precessional and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics. Climate of the Past, 2012, 8, 337-351.	1.3	34
50	How can a glacial inception be predicted?. Holocene, 2011, 21, 831-842.	0.9	28
51	TESTING A PARTICLE FILTER TO RECONSTRUCT CLIMATE CHANGES OVER THE PAST CENTURIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 3611-3618.	0.7	49
52	Individual and combined effects of ice sheets and precession on MIS-13 climate. Climate of the Past, 2009, 5, 229-243.	1.3	63
53	How to Cope with Climate's Complexity?. European Review, 2009, 17, 371-402.	0.4	0
54	The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dynamics, 2009, 32, 525-548.	1.7	169

MICHEL C CRUCIFIX

#	Article	IF	CITATIONS
55	A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dynamics, 2009, 32, 799-815.	1.7	126
56	Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 2009, 60, 723-739.	1.8	186
57	On the use of simple dynamical systems for climate predictions. European Physical Journal: Special Topics, 2009, 174, 11-31.	1.2	24
58	Global-Scale Energy and Freshwater Balance in Glacial Climate: A Comparison of Three PMIP2 LGM Simulations. Journal of Climate, 2008, 21, 5008-5033.	1.2	27
59	The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago. Climate of the Past, 2008, 4, 79-90.	1.3	52
60	Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Progress in Physical Geography, 2007, 31, 481-500.	1.4	60
61	36. Interglacials as simulated by the LLN 2-D NH and MoBidiC climate models. Developments in Quaternary Sciences, 2007, 7, 547-561.	0.1	5
62	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 2007, 3, 279-296.	1.3	349
63	Estimating Shortwave Radiative Forcing and Response in Climate Models. Journal of Climate, 2007, 20, 2530-2543.	1.2	157
64	Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophysical Research Letters, 2007, 34, .	1.5	172
65	The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate of the Past, 2007, 3, 51-64.	1.3	192
66	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Climate of the Past, 2007, 3, 261-277.	1.3	1,089
67	The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations. Journal of Climate, 2006, 19, 1327-1353.	1.2	424
68	How long will our interglacial be?. Eos, 2006, 87, 352.	0.1	15
69	Does the Last Glacial Maximum constrain climate sensitivity?. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	93
70	The Effect of a Large Freshwater Perturbation on the Glacial North Atlantic Ocean Using a Coupled General Circulation Model. Journal of Climate, 2006, 19, 4436-4447.	1.2	17
71	Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Climate Dynamics, 2006, 26, 513-529.	1.7	240
72	EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Climate Dynamics, 2005, 25, 363-385.	1.7	96

#	Article	IF	CITATIONS
73	Commentary on "The Anthropogenic Greenhouse Era Began Thousands of Years Ago― Climatic Change, 2005, 69, 13-426.	1.7	16

Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception ($122\hat{a} \in 100$) Tj ETQq0.0 0 rgBT $\frac{100}{150}$ Verlock

75	Second phase of paleoclimate modelling intercomparison project. Eos, 2005, 86, 264.	0.1	36
76	Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 2005, 32,	1.5	344
77	Stability Analysis of the Climate-Vegetation System in the Northern High Latitudes. Climatic Change, 2003, 57, 119-138.	1.7	83
78	Simulation of ocean-ice sheet interactions during the last deglaciation. Paleoceanography, 2002, 17, 6-18.	3.0	12
79	Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics, 2002, 18, 579-586.	1.7	411
80	Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Climate Dynamics, 2002, 19, 43-60.	1.7	113
81	Transient simulations over the last interglacial period (126-115 kyr BP): feedback and forcing analysis. Climate Dynamics, 2002, 19, 417-433.	1.7	99
82	Effect of isostatic rebound on modelled ice volume variations during the last 200 kyr. Earth and Planetary Science Letters, 2001, 184, 623-633.	1.8	25
83	Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dynamics and Statistics of the Climate System, 0, , dzw004.	0.8	30