
hiroshi takashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A computational search for wurtzite-structured ferroelectrics with low coercive voltages. APL Materials, 2020, 8, .	5.1	19
2	Electroluminescence in perovskite oxide nanocrystals. AIP Advances, 2020, 10, .	1.3	1
3	Role of Pr ³⁺ ions as hole-trapping centers for the electroluminescence of (Ca _{0.6} Sr _{0.4}) _{0.998} Pr _{0.002} Ti _{0.9} Al _{0.1<!--<br-->} thin films. Japanese Journal of Applied Physics, 2020, 59, 092005.	sub ¤@ <su< td=""><td>b><mark>3â</mark>~'<i>δ</i></td></su<>	b> <mark>3â</mark> ~' <i>δ</i>
4	Ultraviolet penetration depth of phosphor Pr-doped Ca0.6Sr0.4TiO3 epitaxial film. Ceramics International, 2019, 45, 21011-21014.	4.8	4
5	Atomic-Scale Observation of Titanium-Ion Shifts in Barium Titanate Nanoparticles: Implications for Ferroelectric Applications. ACS Applied Nano Materials, 2019, 2, 5761-5768.	5.0	14
6	Time dependence of current density, luminance, and efficiency under dc voltages for the thin-film electroluminescent device containing praseodymium and aluminum co-doped perovskite titanate phosphor. Japanese Journal of Applied Physics, 2019, 58, SFFB01.	1.5	2
7	Hydrothermal synthesis of perovskite metal oxide nanoparticles in supercritical water. Ferroelectrics, 2019, 539, 1-8.	0.6	6
8	Preparation and luminescence properties of Pr, Al doped SrTiO3 thin films. Ferroelectrics, 2019, 539, 153-158.	0.6	1
9	Effects of doping by aluminum or lanthanum on the electrical and electroluminescence properties of Ca0.6Sr0.4TiO3:Pr thin films. Journal of Luminescence, 2019, 207, 424-429.	3.1	8
10	Preparation of YBa2Cu3O7- $\hat{1}$ and La1.85Sr0.15 CuO4 Bilayer Structure for Superconducting Connection. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	2
11	Room-temperature growth of thin films of niobium on strontium titanate (0â€0â€ ⁻ 1) single-crystal substrates for superconducting joints. Applied Surface Science, 2018, 444, 71-74.	6.1	6
12	Synthesis of praseodymium-ion-doped perovskite nanophosphor in supercritical water. Materials Research Express, 2018, 5, 055034.	1.6	4
13	Photoluminescent Properties and Local Structure of Tb Doped Fibrous Alumina. Bulletin of the Chemical Society of Japan, 2018, 91, 1731-1738.	3.2	0
14	Growth and superconductivity of niobium titanium alloy thin films on strontium titanate (001) single-crystal substrates for superconducting joints. Scientific Reports, 2018, 8, 15135.	3.3	10
15	Electrical and electroluminescence properties of Ca0.6Sr0.4TiO3:Pr thin film: Anomalous current and luminance relaxation. Journal of Luminescence, 2018, 200, 175-180.	3.1	6
16	Preparation of p-type semiconductor perovskite La1–Sr CoO3 films and their p–n heterostructure devices. Applied Surface Science, 2017, 422, 869-872.	6.1	3
17	Surface morphology and dielectric behavior of perovskite SrTiO 3 thin film in heterostructure electroluminescence devices. Current Applied Physics, 2017, 17, 657-660.	2.4	4
18	Thin-film perovskite electroluminescence with BaTiO ₃ films as insulating layers. Ferroelectrics, 2017, 512, 100-104.	0.6	4

HIROSHI TAKASHIMA

#	Article	IF	CITATIONS
19	Near-infrared luminescence in perovskite BaSnO3 epitaxial films. Applied Physics Letters, 2017, 111, 091903.	3.3	9
20	Photo- and cathodoluminescence of Eu3+ or Tb3+ doped CaZrO3 films prepared by pulsed laser deposition. Optical Materials, 2017, 73, 504-508.	3.6	15
21	UV cathodoluminescence of Gd ³⁺ doped and Gd ³⁺ Pr ³⁺ co-doped YAIO ₃ epitaxial thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 703-706.	1.8	14
22	Ultrafast hydrothermal synthesis of Pr-doped Ca0.6Sr0.4TiO3 red phosphor nanoparticles using corrosion resistant microfluidic devices with Ti-lined structure under high-temperature and high-pressure condition. Chemical Engineering Journal, 2014, 239, 360-363.	12.7	9
23	Electroluminescence near interfaces between (Ca,Sr)TiO3:Pr phosphor and SnO2:Sb transparent conductor thin films prepared by sol–gel and spin-coating methods. Journal of Luminescence, 2014, 149, 133-137.	3.1	21
24	Oxygen Diffusion and Nonstoichiometry in BiFeO ₃ . Inorganic Chemistry, 2013, 52, 12806-12810.	4.0	14
25	Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions. IOP Conference Series: Materials Science and Engineering, 2013, 47, 012045.	0.6	4
26	Preparation and Photoluminescence Property of Praseodymium Doped Calcium Titanate Nanocrystals. ECS Transactions, 2013, 50, 19-24.	0.5	4
27	Preparation of Rare-Earth Doped Zirconia Nanoparticles via Supercritical Hydrothermal Method for Luminescence Properties. Key Engineering Materials, 2012, 512-515, 59-64.	0.4	3
28	Nonlinear Electrical Properties of Thin Films of a Light-Emitting Perovskite-Type Oxide Pr0.002(Ca0.6Sr0.4)0.997TiO3. Procedia Engineering, 2012, 36, 388-395.	1.2	8
29	Oriented growth of luminescent strontium stannate films using a unilamellar nanosheet seed-layer. Thin Solid Films, 2012, 522, 100-103.	1.8	3
30	Fabrication of boehmite and Al2O3 nonwovens from boehmite nanofibres and their potential as the sorbent. Journal of Materials Chemistry, 2012, 22, 21225.	6.7	11
31	Self-standing microporous films of arrayed alumina nano-fibers including Schiff base molecules: effect of the environment around the molecules on their photo-luminescence. Journal of Materials Chemistry, 2012, 22, 9738.	6.7	5
32	Development of Dielectric X-Ray Microcalorimeter. Journal of Low Temperature Physics, 2012, 167, 435-441.	1.4	2
33	Surface treatment- and calcination temperature-dependent adsorption of methyl orange molecules in wastewater on self-standing alumina nanofiber films. Journal of Materials Chemistry, 2011, 21, 14984.	6.7	24
34	Enhancement of Quantum Ferroelectricity in SrTi\$^{18}\$O\$_{3}\$ Thin Film. Applied Physics Express, 2011, 4, 091501.	2.4	3
35	Adsorption of Anionic Nanosheets from Their Dilute Colloidal Suspensions onto Gasâ [~] 'Liquid Interfaces with and without a Langmuir Film of Cationic Surfactant. Langmuir, 2010, 26, 2514-2520.	3.5	9
36	Lowâ€Drivingâ€Voltage Electroluminescence in Perovskite Films. Advanced Materials, 2009, 21, 3699-3702.	21.0	98

HIROSHI TAKASHIMA

#	Article	IF	CITATIONS
37	Nanosheet Seed-Layer Assists Oriented Growth of Highly Luminescent Perovskite Films. Chemistry of Materials, 2009, 21, 21-26.	6.7	47
38	Dielectric properties of SrTiO3 thin film prepared in a mixture of 18O2 and 16O2 gas. Journal of Alloys and Compounds, 2008, 449, 48-51.	5.5	5
39	Photoluminescence from Epitaxial Films of Perovskite-type Alkaline-earth Stannates. Applied Physics Express, 2008, 1, 015003.	2.4	29
40	Electrical voltage manipulation of ferromagnetic microdomain structures in a ferromagnetic/ferroelectric hybrid structure. Journal of Applied Physics, 2007, 101, 09F512.	2.5	22
41	Capacitance thermometer made of oxygen isotope-exchanged strontium titanate perovskite. Applied Physics Letters, 2006, 88, 082906.	3.3	7
42	Frequency Dependence of Dielectric Constant of Strontium Titanate Films with Single-Crystal-Like Behavior. Ferroelectrics, 2006, 335, 45-50.	0.6	4
43	Red photoluminescence in praseodymium-doped titanate perovskite films epitaxially grown by pulsed laser deposition. Applied Physics Letters, 2006, 89, 261915.	3.3	45
44	Capacitance Temperature Sensor Using Ferroelectric (Sr0.95Ca0.05)TiO3Perovskite. Ferroelectrics, 2006, 331, 141-145.	0.6	6
45	AFM study of SrTiO3and YBa2Cu3O7-δmultilayer surface treated with chemical mechanical polishing process. Journal of Physics: Conference Series, 2006, 43, 325-328.	0.4	Ο
46	Capacitance thermometer using BaxSr1-xTiO3solid solutions. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2546-2550.	1.8	2
47	Surface morphology study of a SrTiO3 thin film in a multilayer structure treated by chemical–mechanical polishing. Journal of Crystal Growth, 2005, 283, 163-169.	1.5	4
48	Capacitance temperature sensor using epitaxial SrTiO3 film with a single-crystal-like behavior. Thin Solid Films, 2005, 486, 145-148.	1.8	13
49	Influence of a degraded SrTiO3 layer at the YBa2Cu3O7â ^{~°} δSrTiO3 interface on the dielectric behavior at cryogenic temperature. Cryogenics, 2005, 45, 300-303.	1.7	Ο
50	Large dielectric constant arising from space-charge polarization in a SrTiO3thin film grown on an YBa2Cu3O7-Î1ayer. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R152-R154.	1.8	7
51	Investigation of Temperature Dependence of Microwave-Induced Characteristics of a NbN Josephson Junction Array. IEEE Transactions on Applied Superconductivity, 2005, 15, 205-208.	1.7	1
52	Non-destructive Detection of Defects in Carbon Fiber-Reinforced Carbon Matrix Composites Using SQUID. IEICE Transactions on Electronics, 2005, E88-C, 180-187.	0.6	3
53	Structure and Dielectric Behavior of Epitaxially Grown SrTiO3Film between YBa2Cu3O7-ÎElectrodes. Japanese Journal of Applied Physics, 2004, 43, L170-L172.	1.5	9
54	Fabrication of grain boundary Josephson junction on top layer of YBCO multilayer using chemical mechanical planarization. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1367-1372.	1.2	5

HIROSHI TAKASHIMA

#	Article	IF	CITATIONS
55	Preparation of parallel capacitor of epitaxial SrTiO3 film with a single-crystal-like behavior. Applied Physics Letters, 2003, 83, 2883-2885.	3.3	27
56	SQUID-NDE method on damaged area and damage degree of defects in composite materials. IEEE Transactions on Applied Superconductivity, 2003, 13, 207-210.	1.7	26
57	Fabrication of High-Quality YBa2Cu3O7-δ Multilayer Structure Using Chemical Mechanical Planarization for Superconducting Quantum Interference Device Gradiometer. Japanese Journal of Applied Physics, 2002, 41, L1062-L1065.	1.5	6
58	Non-contact SQUID-NDT method using a ferrite core for carbon-fibre composites. Superconductor Science and Technology, 2002, 15, 1728-1732.	3.5	17
59	Detection of internal cracks and delamination in carbon-fiber-reinforced plastics using SQUID-NDI system. Physica C: Superconductivity and Its Applications, 2002, 372-376, 267-270.	1.2	10
60	Development of an NDE method using SQUIDs for the reconstruction of defect shapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 1311-1314.	1.7	6
61	Regulated Epitaxy of YBa2Cu3O7-δ by Atomic Control of Step Arrays on Vicinal SrTiO3(100) Substrates. Japanese Journal of Applied Physics, 1999, 38, L1499-L1501.	1.5	8
62	Improvement of SrTiO/sub 3/ thin film surface polished by chemical mechanical planarization for HTS multilayer device. IEEE Transactions on Applied Superconductivity, 1999, 9, 3464-3467.	1.7	5
63	Control of surface electronic structure of high T/sub c/ superconducting films for Josephson junctions and electron spectroscopy. IEEE Transactions on Applied Superconductivity, 1999, 9, 1704-1707.	1.7	3
64	HTS-dcSQUID gradiometer for nondestructive evaluation. IEEE Transactions on Applied Superconductivity, 1999, 9, 4393-4396.	1.7	14
65	TUNNELING SPECTROSCOPY AND PAIRING SYMMETRY OF THE HIGH-Tc SUPERCONDUCTORS. Journal of Physics and Chemistry of Solids, 1998, 59, 2034-2039.	4.0	50
66	Control of Step Arrays on Normal and Vicinal SrTiO3(100) Substrates. Japanese Journal of Applied Physics, 1998, 37, L1014-L1016.	1.5	16
67	Tunneling spectroscopy of superconductingNd1.85Ce0.15CuO4â^δ. Physical Review B, 1998, 57, 8680-8686.	3.2	107
68	Development of intrinsic surfaces, and their electronic structures and stability of non-c-axis YBCO epitaxial films. IEEE Transactions on Applied Superconductivity, 1997, 7, 2161-2164.	1.7	10
69	Tunneling spectroscopy and symmetries in YBCO and NCCO. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1477-1478.	1.2	2
70	Orientation dependence of tunneling spectra in YBCO and NCCO. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1485-1486.	1.2	12
71	Tunneling spectroscopy of d-wave superconductors. Journal of Physics and Chemistry of Solids, 1995, 56, 1721-1723.	4.0	27
72	Origin of zero-bias conductance peaks in high-Tcsuperconductors. Physical Review B, 1995, 51, 1350-1353.	3.2	369

#	Article	IF	CITATIONS
73	Low-Temperature Scanning Tunneling Spectroscopy of a-Axis-Oriented PrBa2Cu3O y Films on YBa2Cu3O x. Japanese Journal of Applied Physics, 1995, 34, 89-92.	1.5	3
74	Evidence for d-wave symmetry in high-Tc superconductors based on tunneling theory and STM experiment. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1911-1912.	1.2	0
75	Single crystal growth of superconducting La2-xBaxCuO4 by TSFZ method. Physica C: Superconductivity and Its Applications, 1993, 209, 442-448.	1.2	17
76	Properties of Boehmite AlO(OH) Nanoparticles as the Coatings and Fillers. Key Engineering Materials, 0, 512-515, 604-608.	0.4	2