
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041480/publications.pdf Version: 2024-02-01

LOSÃO L ADIAS

#	Article	IF	CITATIONS
1	Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012, 112, 5818-5878.	23.0	1,769
2	Novel Strategies to Improve the Anticancer Action of 5-Fluorouracil by Using Drug Delivery Systems. Molecules, 2008, 13, 2340-2369.	1.7	184
3	Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. Journal of Controlled Release, 2001, 77, 309-321.	4.8	180
4	Magnetic Colloids As Drug Vehicles. Journal of Pharmaceutical Sciences, 2008, 97, 2948-2983.	1.6	161
5	Squalene Based Nanocomposites: A New Platform for the Design of Multifunctional Pharmaceutical Theragnostics. ACS Nano, 2011, 5, 1513-1521.	7.3	141
6	Drug Targeting Strategies in Cancer Treatment: An Overview. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1-17.	1.1	139
7	Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. Journal of Materials Chemistry, 2012, 22, 7622.	6.7	132
8	Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. International Journal of Pharmaceutics, 2017, 516, 61-70.	2.6	110
9	Doxorubicin-Loaded Nanoparticles: New Advances in Breast Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1058-1070.	0.9	106
10	Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles. Journal of Colloid and Interface Science, 2006, 299, 599-607.	5.0	99
11	Colloidal Stability of Magnetite/Poly(lactic acid) Core/Shell Nanoparticles. Langmuir, 2006, 22, 2816-2821.	1.6	84
12	Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 54-63.	2.0	82
13	Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles. Journal of Controlled Release, 2008, 125, 50-58.	4.8	78
14	Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 329-338.	2.0	77
15	Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: A comparative study. Colloids and Surfaces B: Biointerfaces, 2008, 62, 64-70.	2.5	76
16	Lipid-Based Drug Delivery Systems for Cancer Treatment. Current Drug Targets, 2011, 12, 1151-1165.	1.0	76
17	Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. International Journal of Pharmaceutics, 2009, 382, 270-276.	2.6	75
18	An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opinion on Therapeutic Patents, 2019, 29, 891-907.	2.4	74

#	Article	IF	CITATIONS
19	Synthesis of lidocaine-loaded PLGA microparticles by flow focusing. International Journal of Pharmaceutics, 2008, 358, 27-35.	2.6	73
20	Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. Journal of Controlled Release, 2015, 197, 190-198.	4.8	68
21	Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathogens, 2015, 11, e1004942.	2.1	63
22	Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. International Journal of Pharmaceutics, 2016, 504, 11-19.	2.6	61
23	Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. International Journal of Pharmaceutics, 2007, 339, 237-245.	2.6	55
24	Magnetoresponsive Squalenoyl Gemcitabine Composite Nanoparticles for Cancer Active Targeting. Langmuir, 2008, 24, 7512-7519.	1.6	54
25	Superior Preclinical Efficacy of Gemcitabine Developed As Chitosan Nanoparticulate System. Biomacromolecules, 2011, 12, 97-104.	2.6	53
26	Aging Effects in the Electrokinetics of Colloidal Iron Oxides. Journal of Colloid and Interface Science, 2002, 245, 86-90.	5.0	52
27	Liposomes in drug delivery: a patent review (2007 – present). Expert Opinion on Therapeutic Patents, 2013, 23, 1399-1414.	2.4	51
28	Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine. Journal of Drug Targeting, 2009, 17, 586-598.	2.1	49
29	Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. European Journal of Pharmaceutical Sciences, 2017, 102, 24-34.	1.9	49
30	Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. International Journal of Pharmaceutics, 2007, 337, 282-290.	2.6	47
31	In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. International Journal of Pharmaceutics, 2015, 487, 205-212.	2.6	44
32	Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opinion on Drug Delivery, 2011, 8, 1589-1608.	2.4	43
33	Drug Targeting to Cancer by Nanoparticles Surface Functionalized with Special Biomolecules. Current Medicinal Chemistry, 2012, 19, 3188-3195.	1.2	43
34	Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles. International Journal of Nanomedicine, 2015, 10, 1291.	3.3	40
35	Study of carbonyl iron/poly(butylcyanoacrylate) (core/shell) particles as anticancer drug delivery systems. European Journal of Pharmaceutical Sciences, 2008, 33, 252-261.	1.9	38
36	Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids and Surfaces B: Biointerfaces, 2010, 77, 111-116.	2.5	38

#	Article	IF	CITATIONS
37	Insulin-loaded PLGA microparticles: flow focusing <i>versus</i> double emulsion/solvent evaporation. Journal of Microencapsulation, 2011, 28, 430-441.	1.2	37
38	Acute renal failure when exenatide is co-administered with diuretics and angiotensin II blockers. International Journal of Clinical Pharmacy, 2010, 32, 559-561.	1.4	36
39	Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing® for efficient antitumor activity. International Journal of Pharmaceutics, 2013, 443, 103-109.	2.6	36
40	Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur. Drug Development and Industrial Pharmacy, 2010, 36, 744-750.	0.9	35
41	Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. Nanomaterials, 2022, 12, 354.	1.9	35
42	5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. International Journal of Nanomedicine, 2012, 7, 95.	3.3	34
43	Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 171, 553-565.	2.5	30
44	Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers. Journal of Colloid and Interface Science, 2008, 324, 199-204.	5.0	29
45	Protein-loaded PLGA microparticles engineered by flow focusing: Physicochemical characterization and protein detection by reversed-phase HPLC. International Journal of Pharmaceutics, 2009, 380, 147-154.	2.6	28
46	Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Design, Development and Therapy, 2015, 9, 6433.	2.0	28
47	Poly(butylcyanoacrylate) and Poly(ε-caprolactone) Nanoparticles Loaded with 5-Fluorouracil Increase the Cytotoxic Effect of the Drug in Experimental Colon Cancer. AAPS Journal, 2015, 17, 918-929.	2.2	28
48	Engineering of an antitumor (core/shell) magnetic nanoformulation based on the chemotherapy agent ftorafur. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 157-163.	2.3	27
49	Iron oxide-based multifunctional nanoparticulate systems for biomedical applications: a patent review (2008 – present). Expert Opinion on Therapeutic Patents, 2015, 25, 691-709.	2.4	27
50	Loading of 5-Fluorouracil to Poly(ethyl-2-cyanoacrylate) Nanoparticles with a Magnetic Core. Journal of Biomedical Nanotechnology, 2005, 1, 214-223.	0.5	26
51	Engineering of Δ 9 -tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids and Surfaces B: Biointerfaces, 2014, 123, 114-122.	2.5	23
52	Nano-Sized Platforms for Vaginal Drug Delivery. Current Pharmaceutical Design, 2015, 21, 1633-1644.	0.9	22
53	Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. Journal of Nanoparticle Research, 2011, 13, 4311-4323.	0.8	21
54	Formulation and physicochemical characterization of poly(É›-caprolactone) nanoparticles loaded with ftorafur and diclofenac sodium. Colloids and Surfaces B: Biointerfaces, 2010, 75, 204-208.	2,5	20

#	Article	IF	CITATIONS
55	Possibilities of Poly(D,L-lactide-co-glycolide) in the Formulation of Nanomedicines Against Cancer. Current Drug Targets, 2011, 12, 1096-1111.	1.0	20
56	Stability of fenbendazole suspensions for veterinary use. European Journal of Pharmaceutical Sciences, 2008, 34, 257-262.	1.9	19
57	Maghemite/poly(d,l-lactide-co-glycolyde) composite nanoplatform for therapeutic applications. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	19
58	Gemcitabine-Loaded Magnetically Responsive Poly(ε-caprolactone) Nanoparticles against Breast Cancer. Polymers, 2020, 12, 2790.	2.0	17
59	Development of biomedical 5-fluorouracil nanoplatforms for colon cancer chemotherapy: Influence of process and formulation parameters. International Journal of Pharmaceutics, 2017, 530, 155-164.	2.6	16
60	Study of the stability of Kollidon® SR suspensions for pharmaceutical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 107-113.	2.3	15
61	Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. Journal of Materials Chemistry B, 2021, 9, 4963-4980.	2.9	15
62	Drug Delivery to Inflammation Based on Nanoparticles Surface Decorated with Biomolecules. Current Medicinal Chemistry, 2012, 19, 3203-3211.	1.2	14
63	RNA Interference in the Treatment of Colon Cancer. BioDrugs, 2013, 27, 317-327.	2.2	14
64	Skin Creams Made with Olive Oil. , 2010, , 1133-1141.		10
65	A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics, 2021, 13, 1232.	2.0	10
66	Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs. AAPS PharmSciTech, 2017, 18, 3042-3052.	1.5	9
67	Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. International Journal of Pharmaceutics, 2017, 518, 270-280.	2.6	9
68	Formulation of Chitosan Nanoparticles Loaded with Metronidazole for the Treatment of Infectious Diseases. Letters in Drug Design and Discovery, 2010, 7, 70-78.	0.4	9
69	Biodegradable polymeric nanoformulation based on the antiprotozoal canthin-6-one. Journal of Nanoparticle Research, 2011, 13, 6737-6746.	0.8	8
70	Kollidon® SR colloidal particles as vehicles for oral morphine delivery in pain treatment. Colloids and Surfaces B: Biointerfaces, 2009, 70, 207-212.	2.5	7
71	Editorial [Hot Topic: Drug Delivery Strategies in Targeting Cancer:Current Concepts and Future Developments (Guest Editor: Jose L. Arias)]. Current Drug Targets, 2011, 12, 1094-1095.	1.0	7
72	Nanotechnology for vaginal drug delivery and targeting. , 2020, , 647-682.		7

#	Article	IF	CITATIONS
73	Multifunctional Anticancer Nanomedicine Based on a Magnetically Responsive Cyanoacrylate Polymer. Methods in Enzymology, 2012, 508, 61-88.	0.4	4
74	Nano-engineering of biomedical prednisolone liposomes: evaluation of the cytotoxic effect on human colon carcinoma cell lines. Journal of Pharmacy and Pharmacology, 2018, 70, 488-497.	1.2	4
75	First steps in the formulation of praziquantel nanosuspensions for pharmaceutical applications. Pharmaceutical Development and Technology, 2020, 25, 892-898.	1.1	4
76	Synthesis of a Biodegradable Magnetic Nanomedicine Based on the Antitumor Molecule Tegafur. Medicinal Chemistry, 2012, 8, 516-523.	0.7	4
77	Role of the electrokinetic properties on the stability of mebendazole suspensions for veterinary applications. International Journal of Pharmaceutics, 2010, 393, 162-167.	2.6	3
78	Nanomedicine for vaginal drug delivery. , 2021, , 235-257.		3
79	Advanced Engineering Approaches in the Development of PLGA-Based Nanomedicines. , 2016, , 1009-1039.		3
80	Advanced Engineering Approaches in the Development of PLGA-Based Nanomedicines. , 2015, , 1-25.		2
81	Editorial [Hot Topic: Chemical Engineering of Nanocarrier Surfaces for an Efficient Drug Delivery to Severe Diseases (Guest Editor: Jose L. Arias)]. Current Medicinal Chemistry, 2012, 19, 3069-3069.	1.2	1
82	5-Fluorouracil-loaded iron/ethylcellulose (core/shell) nanoparticles for active targeting of cancer. Journal of Drug Targeting, 2009, 00, 090902081842026-10.	2.1	1