Marina A Katkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New trends in design of electroluminescent rare earth metallo-complexes for OLEDs. Dalton Transactions, 2010, 39, 6599.	1.6	214
2	Near-infrared electroluminescent lanthanide [Pr(iii), Nd(iii), Ho(iii), Er(iii), Tm(iii), and Yb(iii)] N,O-chelated complexes for organic light-emitting devices. Journal of Materials Chemistry, 2011, 21, 16611.	6.7	88
3	Synthesis, Structures, and Electroluminescent Properties of Scandium N,O-Chelated Complexes toward Near-White Organic Light-Emitting Diodes. Inorganic Chemistry, 2010, 49, 5094-5100.	1.9	57
4	Synthesis and luminescent properties of lanthanide homoleptic mercaptothi(ox)azolate complexes: Molecular structure of Ln(mbt)3 (Ln=Eu, Er). Inorganica Chimica Acta, 2006, 359, 4289-4296.	1.2	49
5	Efficient synthetic route to anhydrous mononuclear tris(8-quinolinolato)lanthanoid complexes for organic light-emitting devices. Inorganica Chimica Acta, 2005, 358, 3625-3632.	1.2	40
6	Lanthanide phenolates with heterocyclic substituents. Synthesis, structure and luminescent properties. Polyhedron, 2013, 50, 112-120.	1.0	33
7	Lanthanide imidodiphosphinate complexes. Synthetic Metals, 2009, 159, 1398-1402.	2.1	31
8	Facile Oneâ€Pot Route toward Waterâ€Soluble Lanthanide–Copper–GlycinehydroxÂimate 15â€Metallacrown Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 5202-5208.	lâ€5 1.0	31
9	2-Mercaptobenzothiazolate complexes of rare earth metals and their electroluminescent properties. Organic Electronics, 2009, 10, 623-630.	1.4	29
10	New experimental insights into the formation of unexpected water-soluble Eu(III)–Cu(II) 15-metallacrown-5 compound with acetate. Inorganic Chemistry Communication, 2015, 52, 31-33.	1.8	28
11	Reduction of azobenzene by neodymium(II), dysprosium(II), and thulium(II) diiodides. Journal of Organometallic Chemistry, 2003, 682, 218-223.	0.8	27
12	Electroluminescent characteristics of scandium and yttrium 8-quinolinolates. Journal of Applied Physics, 2008, 104, 053706.	1.1	24
13	Water-soluble tetraaqua Ln(III) glycinehydroximate 15-metallacrown-5 complexes towards potential MRI contrast agents for ultra-high magnetic field. Polyhedron, 2016, 114, 165-171.	1.0	24
14	Synthesis and characterization of phenanthren-o-iminoquinone complexes of rare earth metals. Journal of Organometallic Chemistry, 2010, 695, 2774-2780.	0.8	22
15	New type of arrangement of rare-earth quinolinolate. Molecular structure of scandium 2-methyl-8-quinolinolate. Inorganica Chimica Acta, 2009, 362, 1393-1395.	1.2	21
16	Modification of anode surface in organic light-emitting diodes by chalcogenes. Applied Surface Science, 2008, 254, 2216-2219.	3.1	17
17	Copper(II)–cerium(III) 15-metallacrown-5 based on glycinehydroxamic acid as a new precursor for heterobimetallic composite materials on carbon nanotubes. Polyhedron, 2016, 114, 96-100.	1.0	17
18	New insights into waterâ€soluble and waterâ€coordinated copper 15â€metallacrownâ€5 gadolinium complexes designed for highâ€field magnetic resonance imaging applications. Applied Organometallic Chemistry, 2018, 32, e4389.	1.7	15

MARINA A KATKOVA

#	Article	IF	CITATIONS
19	Anhydrous mono- and dinuclear tris(quinolinolate) complexes of scandium: the missing structures of rare earth metal 8-quinolinolates. Dalton Transactions, 2011, 40, 7713.	1.6	14
20	Rare-earth metal 8-hydroxyquinolinate complexes as materials for organic light-emitting diodes. Russian Chemical Bulletin, 2008, 57, 2281-2284.	0.4	12
21	Scandium 2-mercaptobenzothiazolate: Synthesis, structure and electroluminescent properties. Polyhedron, 2010, 29, 400-404.	1.0	10
22	Effect of Ce(III)-Cu(II) 15-metallacrown-5 compounds on the dispersion of multi-walled carbon nanotubes in aqueous solutions: Toward surfactant-free applications. Thin Solid Films, 2017, 628, 112-116.	0.8	9
23	Water-Soluble Bismuth(III) Polynuclear Tyrosinehydroximate Metallamacrocyclic Complex: Structural Parallels to Lanthanide Metallacrowns. Molecules, 2020, 25, 4379.	1.7	9
24	pHâ€Responsive Switching Properties of a Waterâ€Soluble Metallamacrocyclic Phenylalaninehydroximate La(III)–Cu(II) Complex: Insight into Tuning Protonation Ligand States. European Journal of Inorganic Chemistry, 2019, 2019, 4328-4335.	1.0	8
25	The first water-soluble polynuclear metallamacrocyclic Sr(<scp>ii</scp>)–Cu(<scp>ii</scp>) complex based on simple glycinehydroximate ligands. Dalton Transactions, 2019, 48, 10479-10487.	1.6	8
26	Preparation and Thermal Decomposition of Ln(III)-Cu(II) Polynuclear Metallamacrocyclic Compounds Based on Glycinehydroxamic Acid. Macroheterocycles, 2016, 9, 263-267.	0.9	7
27	Surface modification of silicon plate by hydrothermal treatment with a copper–cerium metallamacrocyclic compound. Mendeleev Communications, 2017, 27, 402-404.	0.6	6
28	Investigation of Chromophoric Behavior of Waterâ€Soluble La ^{III} â€Cu ^{II} Polynuclear Metallamacrocyclic 15â€MCâ€5 Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 907-911.	0.6	6
29	Polynuclear Aminohydroximate Metallamacrocyclic Cu(II) e(III) Complexes: A Facile Route to Intricate Nanostructures of Copper and Cerium Oxides. European Journal of Inorganic Chemistry, 2019, 2019, 1002-1010.	1.0	6
30	1,3-Bis(alkylimino)isoindolinates of rare earth metals: Synthesis, molecular structure and photoluminescence. Polyhedron, 2010, 29, 10-15.	1.0	5
31	Experimental and theoretical study of the effect of the substituent nature on the luminescent properties of scandium complexes with substituted 8-hydroxyquinolines. High Energy Chemistry, 2010, 44, 503-510.	0.2	5
32	Synthesis and X-Ray Structure of 1,3,5-Tri(phenylethynyl)benzene. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1998, 53, 833-835.	0.3	4
33	Thermochemical properties of new N,O-chelate Sc, Eu, and Tb complexes for OLED-devices. Russian Journal of General Chemistry, 2012, 82, 1250-1253.	0.3	4
34	Imidophosphinate complexes of lanthanides. Investigation of thermochemical properties. Russian Journal of General Chemistry, 2009, 79, 1641-1644.	0.3	2
35	Yellow–green organic light-emitting diode based on tris(2-methyl-8-quinolinolate) scandium. Synthetic Metals, 2010, 160, 2476-2480.	2.1	1
36	Water-soluble heteroligand complexes of 2-methyl-4-oxo-4H-pyran-3-olatoneodymium(III) with amino acids. Russian Journal of General Chemistry, 2014, 84, 923-926.	0.3	1

#	Article	IF	CITATIONS
37	Digital Economy: Content and Development Trends. Izvestiya of Saratov University New Series Series Economics Management Law, 2019, 19, 257-264.	0.0	0