
Frank Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041356/publications.pdf Version: 2024-02-01

FRANK TONC

#	Article	IF	CITATIONS
1	Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 2005, 8, 679-685.	14.8	1,666
2	Neural bases of binocular rivalry. Trends in Cognitive Sciences, 2006, 10, 502-511.	7.8	634
3	Decoding Patterns of Human Brain Activity. Annual Review of Psychology, 2012, 63, 483-509.	17.7	304
4	Robust representations for faces: Evidence from visual search Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1016-1035.	0.9	280
5	RESPONSE PROPERTIES OF THE HUMAN FUSIFORM FACE AREA. Cognitive Neuropsychology, 2000, 17, 257-280.	1.1	277
6	Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience, 2015, 18, 496-498.	14.8	91
7	Neural Mechanisms of Object-Based Attention. Cerebral Cortex, 2015, 25, 1080-1092.	2.9	81
8	Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 6-17.	0.9	76
9	Opportunities and challenges for a maturing science of consciousness. Nature Human Behaviour, 2019, 3, 104-107.	12.0	58
10	Imagery and visual working memory: one and the same?. Trends in Cognitive Sciences, 2013, 17, 489-490.	7.8	54
11	Radial bias is not necessary for orientation decoding. NeuroImage, 2016, 127, 23-33.	4.2	48
12	How attention extracts objects from noise. Journal of Neurophysiology, 2013, 110, 1346-1356.	1.8	40
13	Evidence of gradual loss of precision for simple features and complex objects in visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 925-940.	0.9	39
14	Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex. NeuroImage, 2012, 63, 1212-1222.	4.2	38
15	Characterizing the effects of feature salience and top-down attention in the early visual system. Journal of Neurophysiology, 2017, 118, 564-573.	1.8	36
16	Reprioritization of Features of Multidimensional Objects Stored in Visual Working Memory. Psychological Science, 2017, 28, 1773-1785.	3.3	34
17	The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate. PLoS ONE, 2017, 12, e0175230.	2.5	26
18	Figure-Ground Modulation in the Human Lateral Geniculate Nucleus Is Distinguishable from Top-Down Attention. Current Biology, 2019, 29, 2051-2057.e3.	3.9	24

Frank Tong

#	Article	IF	CITATIONS
19	Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images. PLoS Biology, 2021, 19, e3001418.	5.6	23
20	Oculomotor Remapping of Visual Information to Foveal Retinotopic Cortex. Frontiers in Systems Neuroscience, 2016, 10, 54.	2.5	22
21	The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception. Journal of Neuroscience, 2015, 35, 16398-16403.	3.6	15
22	Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling. Journal of Neuroscience, 2020, 40, 3292-3303.	3.6	14
23	Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing. Journal of Vision, 2021, 21, 6.	0.3	12
24	Neural representation of form-contingent color filling-in in the early visual cortex. Journal of Vision, 2017, 17, 10.	0.3	10
25	Visual expectations change subjective experience without changing performance. Consciousness and Cognition, 2019, 71, 59-69.	1.5	7
26	The emotional attentional blink is robust to divided attention. Attention, Perception, and Psychophysics, 2019, 81, 205-216.	1.3	4
27	Evaluating the robustness of object recognition to visual noise in humans and convolutional neural networks. Journal of Vision, 2017, 17, 805.	0.3	4
28	â€∢Can deep learning networks acquire the robustness of human recognition when faced with objects in visual noise?. Journal of Vision, 2018, 18, 903.	0.3	4
29	Aligning Brains and Minds. Neuron, 2011, 72, 199-201.	8.1	2
30	Integrating theoretical models with functional neuroimaging. Journal of Mathematical Psychology, 2017, 76, 80-93.	1.8	2
31	When participants report zero confidence in their visual working memory, how much information do they really have?. Journal of Vision, 2021, 21, 2661.	0.3	0
32	Training with simulated lung nodules in X-rays can improve the localization performance of radiology residents. Journal of Vision, 2019, 19, 27c.	0.3	0
33	Visual crowding disrupts the cortical representation of letters in early visual areas. Journal of Vision, 2019, 19, 65c.	0.3	0
34	A novel learning-based paradigm to investigate the visual-cognitive bases of lung nodule detection. Journal of Vision, 2019, 19, 255.	0.3	0