Filip Bergquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4041313/publications.pdf Version: 2024-02-01

FILLE REPCOLLIST

#	Article	IF	CITATIONS
1	Predictive Value of Ambulatory Objective Movement Measurement for Outcomes of Levodopa/Carbidopa Intestinal Gel Infusion. Journal of Personalized Medicine, 2022, 12, 27.	2.5	4
2	Optimizing Treatment of Parkinson's Disease. Journal of Personalized Medicine, 2022, 12, 245.	2.5	0
3	Activation of glucagonâ€like peptideâ€1 receptors and skilled reach foraging. Addiction Biology, 2021, 26, e12953.	2.6	3
4	Life with Parkinson's Disease During the COVID-19 Pandemic: The Pressure Is "OFF― Journal of Parkinson's Disease, 2021, 11, 491-495.	2.8	16
5	Motion Sensor-Based Assessment of Parkinson's Disease Motor Symptoms During Leg Agility Tests: Results From Levodopa Challenge. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 111-119.	6.3	14
6	Nicotineâ€induced neuroplasticity in striatum is subregionâ€specific and reversed by motor training on the rotarod. Addiction Biology, 2020, 25, e12757.	2.6	19
7	c-Fos Expression after Stochastic Vestibular Stimulation and Levodopa in 6-OHDA Hemilesioned Rats. Neuroscience, 2020, 424, 146-154.	2.3	6
8	A multiple motion sensors index for motor state quantification in Parkinson's disease. Computer Methods and Programs in Biomedicine, 2020, 189, 105309.	4.7	12
9	Objective measurement in Parkinson's disease: a descriptive analysis of Parkinson's symptom scores from a large population of patients across the world using the Personal KinetiGraph®. Journal of Clinical Movement Disorders, 2020, 7, 5.	2.2	17
10	Apomorphine formulation may influence subcutaneous complications from continuous subcutaneous apomorphine infusion in Parkinson's disease. Journal of Neurology, 2020, 267, 3411-3417.	3.6	3
11	A Phase 2a Trial Investigating the Safety and Tolerability of the Novel Cortical Enhancer IRL752 in Parkinson's Disease Dementia. Movement Disorders, 2020, 35, 1046-1054.	3.9	12
12	Sensor-based algorithmic dosing suggestions for oral administration of levodopa/carbidopa microtablets for Parkinson's disease: a first experience. Journal of Neurology, 2019, 266, 651-658.	3.6	15
13	An upper body garment with integrated sensors for people with neurological disorders – early development and evaluation. BMC Biomedical Engineering, 2019, 1, 3.	2.6	13
14	Ghrelin signalling within the rat nucleus accumbens and skilled reach foraging. Psychoneuroendocrinology, 2019, 106, 183-194.	2.7	13
15	Evaluation of a sensor algorithm for motor state rating in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 64, 112-117.	2.2	2
16	Acoustic white noise ameliorates reduced regional brain expression of CaMKII and ΔFosB in the spontaneously hypertensive rat model of ADHD. IBRO Reports, 2019, 6, 31-39.	0.3	1
17	Unsupervised Learning from Motion Sensor Data to Assess the Condition of Patients with Parkinson's Disease. Lecture Notes in Computer Science, 2019, , 420-424.	1.3	0
18	Individualization of levodopa treatment using a microtablet dispenser and ambulatory accelerometry. CNS Neuroscience and Therapeutics, 2018, 24, 439-447.	3.9	20

FILIP BERGQUIST

#	Article	IF	CITATIONS
19	A Treatment-Response Index From Wearable Sensors for Quantifying Parkinson's Disease Motor States. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1341-1349.	6.3	40
20	Wearables in epilepsy and Parkinson's disease—A focus group study. Acta Neurologica Scandinavica, 2018, 137, 188-194.	2.1	59
21	Cerebrospinal fluid protein markers in PD patients after DBS-STN surgery—A retrospective analysis of patients that underwent surgery between 1993 and 2001. Clinical Neurology and Neurosurgery, 2018, 174, 174-179.	1.4	3
22	Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 14.	5.3	70
23	Levodopa/carbidopa microtablets in Parkinson's disease: a study of pharmacokinetics and blinded motor assessment. European Journal of Clinical Pharmacology, 2017, 73, 563-571.	1.9	40
24	Cerebrospinal fluid markers of neuronal and glial cell damage in patients with autoimmune neurologic syndromes with and without underlying malignancies. Journal of Neuroimmunology, 2017, 306, 25-30.	2.3	17
25	Key clinical milestones 15 years and onwards after DBS-STN surgery—A retrospective analysis of patients that underwent surgery between 1993 and 2001. Clinical Neurology and Neurosurgery, 2017, 154, 43-48.	1.4	27
26	A smartphone-based system to quantify dexterity in Parkinson's disease patients. Informatics in Medicine Unlocked, 2017, 9, 11-17.	3.4	40
27	GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology, 2016, 65, 54-66.	2.7	100
28	The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior. Neuropsychopharmacology, 2016, 41, 1199-1209.	5.4	69
29	Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease. Sensors, 2015, 15, 23727-23744.	3.8	51
30	An Objective Fluctuation Score for Parkinson's Disease. PLoS ONE, 2015, 10, e0124522.	2.5	69
31	Unpredictable sensations: can stochastic resonance help in Parkinson's disease?. Neurodegenerative Disease Management, 2015, 5, 275-277.	2.2	Ο
32	Effects of Stochastic Vestibular Galvanic Stimulation and LDOPA on Balance and Motor Symptoms in Patients With Parkinson's Disease. Brain Stimulation, 2015, 8, 474-480.	1.6	61
33	Local Change in Urinary Bladder Contractility Following CNS Dopamine Denervation in the 6-OHDA Rat Model ofÂParkinson's Disease. Journal of Parkinson's Disease, 2015, 5, 301-311.	2.8	11
34	Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder. Behavioural Brain Research, 2015, 280, 84-91.	2.2	12
35	Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiology and Behavior, 2014, 136, 135-144.	2.1	63
36	The Discriminating Properties of an Optoelectronic Movement Analysis Method in Patients With Parkinsonism. Journal of Motor Behavior, 2013, 45, 415-422.	0.9	1

FILIP BERGQUIST

#	Article	IF	CITATIONS
37	Evaluation of the Objective Posturo-Locomotor-Manual Method in Patients with Parkinsonian Syndromes. Frontiers in Neurology, 2013, 4, 95.	2.4	4
38	The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors. Journal of Neuroscience, 2012, 32, 4812-4820.	3.6	305
39	Noisy Galvanic Vestibular Stimulation Promotes GABA Release in the Substantia Nigra and Improves Locomotion in Hemiparkinsonian Rats. PLoS ONE, 2012, 7, e29308.	2.5	51
40	Noise benefit in prepulse inhibition of the acoustic startle reflex. Psychopharmacology, 2011, 214, 675-685.	3.1	13
41	Rebalancing the commissural system: Mechanisms of vestibular compensation. Journal of Vestibular Research: Equilibrium and Orientation, 2010, 19, 201-207.	2.0	28
42	Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors. Experimental Neurology, 2010, 221, 251-259.	4.1	9
43	Role of the commissural inhibitory system in vestibular compensation in the rat. Journal of Physiology, 2008, 586, 4441-4452.	2.9	68
44	Dendritic Transmitter Release: A Comparison of Two Model Systems. Journal of Neuroendocrinology, 2008, 20, 677-686.	2.6	44
45	Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission. European Journal of Neuroscience, 2006, 24, 617-624.	2.6	54
46	Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. Journal of Physiology, 2006, 577, 857-868.	2.9	54
47	Transplantation of Human Embryonic Stem Cell-Derived Cells to a Rat Model of Parkinson's Disease: Effect of In Vitro Differentiation on Graft Survival and Teratoma Formation. Stem Cells, 2006, 24, 1433-1440.	3.2	394
48	Dopamine Release in Substantia Nigra: Release Mechanisms and Physiological Function in Motor Control. , 2005, , 85-99.		6
49	Cellular Mechanisms of Vestibular Compensation. Neuroembryology and Aging, 2004, 3, 183-193.	0.1	19
50	Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Research, 2003, 973, 81-91.	2.2	74
51	An investigation of dopaminergic metabolites in the striatum and in the substantia nigra in vivo utilising radiolabelled L-DOPA and high performance liquid chromatography: a new approach in the search for transmitter metabolites. Neuroscience, 2003, 120, 425-433.	2.3	5
52	Influence of r-type (Cav2.3) and t-type (Cav3.1–3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience, 2003, 120, 757-764.	2.3	30
53	Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain Research, 2002, 950, 245-253.	2.2	51
54	Effects of Local Administration of L-, N-, and P/Q-Type Calcium Channel Blockers on Spontaneous Dopamine Release in the Striatum and the Substantia Nigra: A Microdialysis Study in Rat. Journal of Neurochemistry, 2002, 70, 1532-1540.	3.9	52

#	Article	IF	CITATIONS
55	Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substantia nigra: A new metabolic pathway?. Synapse, 2001, 40, 294-301.	1.2	47
56	3-Methoxytyramine Formation Following Monoamine Oxidase Inhibition Is a Poor Index of Dendritic Dopamine Release in the Substantia Nigra. Journal of Neurochemistry, 1997, 69, 1684-1692.	3.9	20
57	Pharmacokinetics of Intravenously (DIZ101), Subcutaneously (DIZ102), and Intestinally (LCIG) Infused Levodopa in Advanced Parkinson Disease. Neurology, 0, , 10.1212/WNL.0000000000200804.	1.1	9