Ying-Hao Chu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4040789/ying-hao-chu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

345	23,213 citations	72	145
papers		h-index	g-index
364 ext. papers	25,369 ext. citations	9.2 avg, IF	6.6 L-index

#	Paper	IF	Citations
345	Atomically resolved interlayer electronic states in complex oxides by using cross-sectional scanning tunneling microscopy. <i>Progress in Surface Science</i> , 2022 , 100662	6.6	
344	Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO Films <i>Small</i> , 2022 , e2107540	11	0
343	A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution <i>Nature Communications</i> , 2022 , 13, 1187	17.4	8
342	Flexible Epsilon Iron Oxide Thin Films. ACS Applied Materials & amp; Interfaces, 2021, 13, 17006-17012	9.5	4
341	Structural Anisotropy Determining the Oxygen Evolution Mechanism of Strongly Correlated Perovskite Nickelate Electrocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 4262-4270	8.3	8
340	Fabrication of Large-Scale High-Mobility Flexible Transparent Zinc Oxide Single Crystal Wafers. <i>ACS Applied Materials & Applied & Appli</i>	9.5	0
339	Flexible BiVO/WO/ITO/Muscovite Heterostructure for Visible-Light Photoelectrochemical Photoelectrode. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 21186-21193	9.5	2
338	One-Step Surface-Plasma-Induced Exfoliation of the Graphite/WS2 Bilayer into Homogeneous Two-Dimensional Graphene/WS2 Nanosheet Composites as Catalysts for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 5143-5154	6.1	8
337	Remote growth of oxide heteroepitaxy through MoS2. APL Materials, 2021, 9, 051115	5.7	1
336	Generation and coherent control of terahertz acoustic phonons in superlattices of perovskite oxides. <i>New Journal of Physics</i> , 2021 , 23, 053009	2.9	4
335	Properties of stress-induced super tetragonal phase in epitaxial BiFeO3 thin film. <i>Applied Physics Letters</i> , 2021 , 118, 242903	3.4	
334	Dislocation-induced large local polarization inhomogeneity of ferroelectric materials. <i>Scripta Materialia</i> , 2021 , 194, 113624	5.6	2
333	The microstructure and ferroelectric properties of PbZr0.52Ti0.48O3 films on mica substrates. <i>Ceramics International</i> , 2021 , 47, 9252-9257	5.1	3
332	Strain engineering of optical properties in transparent VO/muscovite heterostructures. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 8908-8915	3.6	8
331	Advances in strain engineering on oxide heteroepitaxy. <i>Matter</i> , 2021 , 4, 2117-2119	12.7	1
330	Antiferroelectric Anisotropy of Epitaxial PbHfO3 Films for Flexible Energy Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2105060	15.6	5
329	Evidence for largest room temperature magnetic signal from Co2+ in antiphase-free & fully inverted CoFe2O4 in multiferroic-ferrimagnetic BiFeO3-CoFe2O4 nanopillar thin films. <i>Journal of Magnetism and Magnetic Materials</i> , 2021 , 530, 167940	2.8	1

(2020-2021)

328	High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure. <i>Nano Energy</i> , 2021 , 87, 106149	17.1	8
327	Negatively Charged In-Plane and Out-Of-Plane Domain Walls with Oxygen-Vacancy Agglomerations in a Ca-Doped Bismuth-Ferrite Thin Film. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 4498-4508	4	1
326	The superparaelectric battery. <i>Science</i> , 2021 , 374, 33-34	33.3	
325	Scalable T-Gate Aligned GrWS2thr Radio-Frequency Field-Effect Transistors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3898-3905	4	6
324	Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application. <i>Small</i> , 2020 , 16, e2000020	11	5
323	Manipulating magnetoelectric energy landscape in multiferroics. <i>Nature Communications</i> , 2020 , 11, 283	3 6 17.4	18
322	Mechanically controllable nonlinear dielectrics. Science Advances, 2020, 6, eaaz3180	14.3	12
321	Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor. <i>Nano Energy</i> , 2020 , 72, 104683	17.1	19
320	Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrates. <i>Nanoscale</i> , 2020 , 12, 3284-3291	7.7	8
319	Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO Domain Wall. <i>Advanced Materials</i> , 2020 , 32, e1905132	24	11
318	Thickness dependence of transport behaviors in SrRuO3/SrTiO3 superlattices. <i>Physical Review Materials</i> , 2020 , 4,	3.2	11
317	Revealing a metastable cubic phase in CoFe2O4BrTiO3 three-dimensional network heteroepitaxial nanostructure. <i>Journal of Applied Physics</i> , 2020 , 128, 225303	2.5	
316	Proton-Mediated Phase Control in Flexible and Transparent Mott Transistors. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900742	6.4	12
315	Graphene-Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits. <i>ACS Nano</i> , 2020 , 14, 985-992	16.7	20
314	Effects of pillar size modulation on the magneto-structural coupling in self-assembled BiFeO3toFe2O4 heteroepitaxy. <i>CrystEngComm</i> , 2020 , 22, 435-440	3.3	9
313	Self-assembled gold nanostructures in complex oxide thin films. <i>Materials Characterization</i> , 2020 , 159, 110069	3.9	1
312	Observation of oxygen pyramid tilting induced polarization rotation in strained BiFeO3 thin film. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 2828-2834	3.8	
311	Photovoltaic and flexible deep ultraviolet wavelength detector based on novel EGaO/muscovite heteroepitaxy. <i>Scientific Reports</i> , 2020 , 10, 16098	4.9	13

310	Mechanical Modulation of Colossal Magnetoresistance in Flexible Epitaxial Perovskite Manganite. <i>Advanced Functional Materials</i> , 2020 , 30, 2004597	15.6	12
309	Atomic-environment-dependent thickness of ferroelastic domain walls near dislocations. <i>Acta Materialia</i> , 2020 , 188, 635-640	8.4	
308	Piezoresponse force microscopy imaging and its correlation with cantilever spring constant and frequency. <i>Journal of Applied Physics</i> , 2020 , 128, 084101	2.5	0
307	Atomic structure and properties of a perovskite/spinel (111) interface. <i>Physical Review B</i> , 2020 , 102,	3.3	2
306	Flexible transparent heteroepitaxial conducting oxide with mobility exceeding 100 cm2 VI sI at room temperature. NPG Asia Materials, 2020, 12,	10.3	3
305	Dynamical Strain-Driven Phase Separation in Flexible CoFeO/CoO Exchange Coupling System. <i>ACS Applied Materials & Discourse Material</i>	9.5	6
304	van der Waals oxide heteroepitaxy for soft transparent electronics. <i>Nanoscale</i> , 2020 , 12, 18523-18544	7.7	8
303	Giant Resistivity Change of Transparent ZnO/Muscovite Heteroepitaxy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 21818-21826	9.5	6
302	Topological Hall Effect in Single Thick SrRuO3 Layers Induced by Defect Engineering. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000184	6.4	15
301	Thickness dependence of the anomalous Hall effect in thin films of the topological semimetal Co2MnGa. <i>Physical Review B</i> , 2019 , 100,	3.3	33
300	Heteroepitaxy of Co-Based Heusler Compound/Muscovite for Flexible Spintronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35162-35168	9.5	11
299	Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate. <i>Organic Electronics</i> , 2019 , 75, 105442	3.5	6
298	Tailoring Magnetoelectric Coupling in BiFeO /La Sr MnO Heterostructure through the Interface Engineering. <i>Advanced Materials</i> , 2019 , 31, e1806335	24	35
297	van der Waals heteroepitaxy on muscovite. <i>Materials Chemistry and Physics</i> , 2019 , 234, 185-195	4.4	29
296	Pulsed laser deposition of complex oxide heteroepitaxy. Chinese Journal of Physics, 2019, 60, 481-501	3.5	12
295	Deterministic optical control of room temperature multiferroicity in BiFeO thin films. <i>Nature Materials</i> , 2019 , 18, 580-587	27	41
294	Electrical polarization induced by atomically engineered compositional gradient in complex oxide solid solution. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	4
293	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. <i>Nano Energy</i> , 2019 , 60, 476-484	17.1	44

(2018-2019)

292	Direct observation of weakened interface clamping effect enabled ferroelastic domain switching. <i>Acta Materialia</i> , 2019 , 171, 184-189	8.4	8	
291	Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. <i>Nano Energy</i> , 2019 , 60, 715-723	17.1	26	
290	Nondestructive Mapping of Long-Range Dislocation Strain Fields in an Epitaxial Complex Metal Oxide. <i>Nano Letters</i> , 2019 , 19, 1445-1450	11.5	10	
289	Enhanced Ferroelectric Functionality in Flexible Lead Zirconate Titanate Films with In Situ Substrate-Clamping Compensation. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900428	6.4	4	
288	Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor. <i>ACS Applied Materials & Discourse Action</i> , 2019, 11, 25882-25890	9.5	22	
287	Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. <i>Nano Research</i> , 2019 , 12, 2889-2893	10	4	
286	Wearable Gallium Oxide Solar-Blind Photodetectors on Muscovite Mica Having Ultrahigh Photoresponsivity and Detectivity with Added High-Temperature Functionalities. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 2463-2470	4	25	
285	Tunable disorder and localization in the rare-earth nickelates. <i>Physical Review Materials</i> , 2019 , 3,	3.2	5	
284	Manipulate the Electronic and Magnetic States in NiCo O Films through Electric-Field-Induced Protonation at Elevated Temperature. <i>Advanced Materials</i> , 2019 , 31, e1900458	24	39	
283	Anisotropic superconductivity induced by periodic multiferroic domain patterns. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	3	
282	Energy Band Gap Modulation in Nd-Doped BiFeO/SrRuO Heteroepitaxy for Visible Light Photoelectrochemical Activity. <i>ACS Applied Materials & District Activity</i> , 11, 1655-1664	9.5	12	
281	Self-Assembled Ferroelectric Nanoarray. ACS Applied Materials & amp; Interfaces, 2019, 11, 2205-2210	9.5	5	
280	Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. <i>Nano Energy</i> , 2019 , 56, 322-329	17.1	93	
279	Microstructure evolution determined by the crystalline phases competition in self-assembled WO3-BiVO4 hetero nanostructures. <i>Journal of Applied Physics</i> , 2018 , 123, 085305	2.5	4	
278	Development of magnetoelectric nanocomposite for soft technology. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 234006	3	7	
277	Discovery of a magnetic conductive interface in PbZrTiO /SrTiO heterostructures. <i>Nature Communications</i> , 2018 , 9, 685	17.4	12	
276	Atomic Heterointerfaces and Electrical Transportation Properties in Self-Assembled LaNiO3NiO Heteroepitaxy. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701202	4.6	5	
275	Atomically Resolved Electronic States and Correlated Magnetic Order at Termination Engineered Complex Oxide Heterointerfaces. <i>ACS Nano</i> , 2018 , 12, 1089-1095	16.7	8	

274	Giant Photoresponse in Quantized SrRuO3 Monolayer at Oxide Interfaces. ACS Photonics, 2018, 5, 1041	-160349	17
273	Tuning Fe concentration in epitaxial gallium ferrite thin films for room temperature multiferroic properties. <i>Acta Materialia</i> , 2018 , 145, 488-495	8.4	20
272	A gate-free monolayer WSe pn diode. <i>Nature Communications</i> , 2018 , 9, 3143	17.4	66
271	Characterization of domain distributions by second harmonic generation in ferroelectrics. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	17
270	Dry lubrication of friction on ferroelectric BiFeO3 film. <i>Applied Surface Science</i> , 2018 , 457, 797-803	6.7	4
269	Electric Field Writing of Ferroelectric Nano-Domains Near 71 Domain Walls with Switchable Interfacial Conductivity. <i>Annalen Der Physik</i> , 2018 , 530, 1800130	2.6	5
268	Flexible Heteroepitaxy Photoelectrode for Photo-electrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3900-3907	6.1	15
267	Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. <i>ACS Applied Materials & Discreta (Materials & Discreta (Ma</i>	9.5	19
266	Thermoelectrics: A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments (Adv. Mater. 28/2018). <i>Advanced Materials</i> , 2018 , 30, 1870243	24	
265	Deterministic, Reversible, and Nonvolatile Low-Voltage Writing of Magnetic Domains in Epitaxial BaTiO/FeO Heterostructure. <i>ACS Nano</i> , 2018 , 12, 9558-9567	16.7	34
264	Conductive tail-to-tail domain walls in epitaxial BiFeO3 films. <i>Applied Physics Letters</i> , 2018 , 113, 082904	3.4	12
263	Ultrafast Giant Photostriction of Epitaxial Strontium Iridate Film with Superior Endurance. <i>Nano Letters</i> , 2018 , 18, 7742-7748	11.5	12
262	Epitaxial Yttria-Stabilized Zirconia on Muscovite for Flexible Transparent Ionic Conductors. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6890-6896	5.6	8
261	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. <i>Nano Letters</i> , 2018 , 18, 6427-6433	11.5	28
260	Complex strain evolution of polar and magnetic order in multiferroic BiFeO thin films. <i>Nature Communications</i> , 2018 , 9, 3764	17.4	30
259	Antiferromagnetic Interfacial Coupling and Giant Magnetic Hysteresis in LaCaMnO-SrRuO Superlattices. <i>ACS Omega</i> , 2018 , 3, 14266-14273	3.9	2
258	Electrostatic potential and valence modulation in LaSrMnO thin films. <i>Scientific Reports</i> , 2018 , 8, 14313	4.9	6
257	Depth-dependent atomic valence determination by synchrotron techniques. <i>Journal of Synchrotron Radiation</i> , 2018 , 25, 1711-1718	2.4	

256	A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments. <i>Advanced Materials</i> , 2018 , 30, e1705385	24	12
255	Development of oxide heteroepitaxy for soft technology. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6102	7 6 <u>∩</u> 117	18
254	Atomic-scale mechanism of internal structural relaxation screening at polar interfaces. <i>Physical Review B</i> , 2018 , 97,	3.3	3
253	Enhancing the magnetic moment of ferrimagnetic NiCo2O4 via ion irradiation driven oxygen vacancies. <i>APL Materials</i> , 2018 , 6, 066109	5.7	15
252	In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces. <i>Scientific Reports</i> , 2017 , 7, 42527	1.9	14
251	In-situ TEM observation of Multilevel Storage Behavior in low power FeRAM device. <i>Nano Energy</i> , 2017 , 34, 103-110	17.1	29
250	Flexible Heteroepitaxy of CoFeO/Muscovite Bimorph with Large Magnetostriction. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	82
249	Strain Coupling of Conversion-type Fe O Thin Films for Lithium Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7813-7816	16.4	46
248	The preparation, and structural and multiferroic properties of B-site ordered double-perovskite Bi2FeMnO6. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5494-5500	7.1	19
247	Atomic-Scale Mechanisms of Defect-Induced Retention Failure in Ferroelectrics. <i>Nano Letters</i> , 2017 , 17, 3556-3562	11.5	36
246	Photostriction of strontium ruthenate. <i>Nature Communications</i> , 2017 , 8, 15018	17.4	36
245	Flexible PbZr0.52Ti0.48O3 Capacitors with Giant Piezoelectric Response and Dielectric Tunability. Advanced Electronic Materials, 2017 , 3, 1600542	5.4	66
244	Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nature Communications, 2017, 8, 15549	17.4	74
243	Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. <i>ACS Nano</i> , 2017 , 11, 6122-6130	16.7	88
242	Flexible ferroelectric element based on van der Waals heteroepitaxy. <i>Science Advances</i> , 2017 , 3, e170012	t 1 4.3	130
241	WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4. NPG Asia Materials, 2017 , 9, e357-e35	i 7 .3	47
240	Magnetic and Magnetodielectric Properties of Epitaxial Iron Vanadate Thin Films. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600295	5.4	7
239	Scalable van der Waals Heterojunctions for High-Performance Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 36181-36188	9.5	23

238	Spin filtering of a termination-controlled LSMO/Alq3 heterojunction for an organic spin valve. Journal of Materials Chemistry C, 2017 , 5, 9128-9137	7.1	5
237	Photostriction of CH NH PbBr Perovskite Crystals. <i>Advanced Materials</i> , 2017 , 29, 1701789	24	59
236	MICAtronics: A new platform for flexible X-tronics. <i>FlatChem</i> , 2017 , 3, 26-42	5.1	101
235	Rewritable ferroelectric vortex pairs in BiFeO3. <i>Npj Quantum Materials</i> , 2017 , 2,	5	48
234	Strain Coupling During Lithiation of a Fe3O4/SrTiO3 Epitaxial Thin Film. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1436-1437	0.5	
233	A Strain-Driven Antiferroelectric-to-Ferroelectric Phase Transition in La-Doped BiFeO Thin Films on Si. <i>Nano Letters</i> , 2017 , 17, 5823-5829	11.5	47
232	Partial Ferroelastic Domain Mediated Ferroelectric Domain Switching. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1624-1625	0.5	
231	Van der Waals oxide heteroepitaxy. <i>Npj Quantum Materials</i> , 2017 , 2,	5	97
230	Magnetic-coupled phase anomaly in mixed-phase BiFeO3 thin films. APL Materials, 2017, 5, 086112	5.7	4
229	Field enhancement of electronic conductance at ferroelectric domain walls. <i>Nature Communications</i> , 2017 , 8, 1318	17.4	22
228	Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures. <i>Journal of Applied Physics</i> , 2017 , 122, 175301	2.5	5
227	Microstructure evolution with composition ratio in self-assembled WO3BiVO4 hetero nanostructures for water splitting. <i>Journal of Materials Research</i> , 2017 , 32, 2790-2799	2.5	11
226	A Metal-Insulator Transition of the Buried MnO Monolayer in Complex Oxide Heterostructure. <i>Advanced Materials</i> , 2016 , 28, 9142-9151	24	14
225	Heteroepitaxy of FeO/Muscovite: A New Perspective for Flexible Spintronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 33794-33801	9.5	83
224	Self-Assembled BiFeO3-EFe2O3 Vertical Heteroepitaxy for Visible Light Photoelectrochemistry. <i>Advanced Energy Materials</i> , 2016 , 6, 1600686	21.8	43
223	Single-Phase Type-I Multiferroics. Series in Materials Science and Engineering, 2016, 33-65		
222	Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. <i>Nature Communications</i> , 2016 , 7, 11318	17.4	48
221	Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness. <i>Scientific Reports</i> , 2016 , 6, 31998	4.9	11

220	Permanent ferroelectric retention of BiFeO mesocrystal. <i>Nature Communications</i> , 2016 , 7, 13199	17.4	33
219	Crossover between superconductivity and magnetism in SrRuO mesocrystal embedded YBaCuO heterostructures. <i>Nanoscale</i> , 2016 , 8, 18454-18460	7.7	3
218	Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Applied Materials & Damp; Interfaces, 2016, 8, 3240	01 5 .3 <mark>3</mark> 24	082
217	Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3. <i>Nature Communications</i> , 2016 , 7, 12773	17.4	48
216	Single-domain multiferroic BiFeO3 films. <i>Nature Communications</i> , 2016 , 7, 12712	17.4	74
215	van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite. <i>Chemistry of Materials</i> , 2016 , 28, 3914-3919	9.6	84
214	Epitaxial integration of a nanoscale BiFeO3 phase boundary with silicon. <i>Nanoscale</i> , 2016 , 8, 1322-6	7.7	5
213	Enhanced Structural and Magnetic Coupling in a Mesocrystal-Assisted Nanocomposite. <i>ACS Applied Materials & Materi</i>	9.5	10
212	Functional Oxide Thin Films and Nanostructures: Growth, Interface, and Applications. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-2	3.2	1
211	Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry. <i>PLoS ONE</i> , 2016 , 11, e0158425	3.7	14
210	Strain-Mediated Inverse Photoresistivity in SrRuO3/La0.7Sr0.3MnO3 Superlattices. <i>Advanced Functional Materials</i> , 2016 , 26, 729-737	15.6	14
209	Anomalous Electronic Anisotropy Triggered by Ferroelastic Coupling in Multiferroic Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 876-83	24	15
208	Control of the Metal-Insulator Transition at Complex Oxide Heterointerfaces through Visible Light. <i>Advanced Materials</i> , 2016 , 28, 764-70	24	11
207	Observation of a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O(7-x)/La0.7Ca0.3MnO3 heterostructures. <i>Nature Communications</i> , 2016 , 7, 10852	17.4	10
206	Tunable complex magnetic states of epitaxial core-shell metal oxide nanocrystals fabricated by the phase decomposition method. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 275001	3	1
205	Mesocrystal-embedded functional oxide systems. <i>MRS Communications</i> , 2016 , 6, 167-181	2.7	8
204	Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. <i>Applied Physics Letters</i> , 2016 , 108, 253104	3.4	68
203	Electrically enhanced magnetization in highly strained BiFeO3 films. NPG Asia Materials, 2016 , 8, e269-6	≥269 3	8

202	Tuning the magnetic properties of self-assembled BiFeO3-CoFe2O4 heteroepitaxy by magneto-structural coupling. <i>Nanoscale</i> , 2016 , 8, 8847-54	7.7	20
201	Superior photoelectrochemical activity of self-assembled NiWO 4 IWO 3 heteroepitaxy. <i>Nano Energy</i> , 2016 , 23, 153-160	17.1	35
200	Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. <i>Nanoscale</i> , 2016 , 8, 15795-8	3 9 :17	60
199	Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. <i>Nano Energy</i> , 2015 , 15, 625-633	17.1	67
198	Self-formed conductive nanofilaments in (Bi, Mn)O for ultralow-power memory devices. <i>Nano Energy</i> , 2015 , 13, 283-290	17.1	14
197	Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures. <i>Nano Letters</i> , 2015 , 15, 6650-7	11.5	23
196	Atomic Visualization of the Phase Transition in Highly Strained BiFeO3 Thin Films with Excellent Pyroelectric Response. <i>Nano Energy</i> , 2015 , 17, 72-81	17.1	17
195	In Situ Study of Spinel Ferrite Nanocrystal Growth Using Liquid Cell Transmission Electron Microscopy. <i>Chemistry of Materials</i> , 2015 , 27, 8146-8152	9.6	36
194	Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites. <i>ACS Applied Materials & Description of the Self-Assembled Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites (Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites)</i>	9.5	10
193	In Situ Study of Fe3Pt-Fe2O3 Core-Shell Nanoparticle Formation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14850-3	16.4	42
192	Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1835-1845	7.1	12
191	Origin of metallic behavior in NiCo2O4 ferrimagnet. <i>Scientific Reports</i> , 2015 , 5, 15201	4.9	89
190	Thickness dependence of La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 magnetoelectric interfaces. <i>Applied Physics Letters</i> , 2015 , 107, 141603	3.4	10
189	Tetragonal BiFeO3 on yttria-stabilized zirconia. APL Materials, 2015, 3, 116104	5.7	6
188	Selective interlayer ferromagnetic coupling between the Cu spins in YBa2Cu3O7-x grown on top of La0.7Ca0.3MnO3. <i>Scientific Reports</i> , 2015 , 5, 16690	4.9	8
187	Tuning the functionalities of a mesocrystal via structural coupling. <i>Scientific Reports</i> , 2015 , 5, 12073	4.9	16
186	Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy. <i>Applied Physics Letters</i> , 2015 , 107, 191902	3.4	4
185	Self-Assembled Epitaxial Core-Shell Nanocrystals with Tunable Magnetic Anisotropy. <i>Small</i> , 2015 , 11, 4117-22	11	5

184	Topological control of nitric oxide secretion by tantalum oxide nanodot arrays. <i>Journal of Nanobiotechnology</i> , 2015 , 13, 79	9.4	7
183	The Effect of Tensile Strain on Optical Anisotropy and Exciton of \$m\$-Plane ZnO. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-8	1.8	2
182	Imaging magnetic and ferroelectric domains and interfacial spins in magnetoelectric La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 heterostructures. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 5040	o 0 3 ⁸	5
181	Revealing the flexoelectricity in the mixed-phase regions of epitaxial BiFeO3 thin films. <i>Scientific Reports</i> , 2015 , 5, 8091	4.9	32
180	BiFeO3Thin Films: A Playground for Exploring Electric-Field Control of Multifunctionalities. <i>Annual Review of Materials Research</i> , 2015 , 45, 249-275	12.8	60
179	Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films. <i>Scientific Reports</i> , 2014 , 4, 4772	4.9	126
178	Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. <i>Nano Letters</i> , 2014 , 14, 1745-50	11.5	252
177	Ferroelastic domain switching dynamics under electrical and mechanical excitations. <i>Nature Communications</i> , 2014 , 5, 3801	17.4	110
176	Controllable electrical conduction at complex oxide interfaces. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 478-500	2.5	10
175	Ferroelectric domain triggers the charge modulation in semiconductors (invited). <i>Journal of Applied Physics</i> , 2014 , 116, 066817	2.5	16
174	Design of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 811-815	7.1	15
173	Conduction control at ferroic domain walls via external stimuli. <i>Nanoscale</i> , 2014 , 6, 10524-9	7.7	16
172	Orientation-tuning in self-assembled heterostructures induced by a buffer layer. <i>Nanoscale</i> , 2014 , 6, 5126-31	7.7	17
171	Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. <i>Journal of Applied Physics</i> , 2014 , 115, 054103	2.5	28
170	Magnetic mesocrystal-assisted magnetoresistance in manganite. <i>Nano Letters</i> , 2014 , 14, 6073-9	11.5	24
169	Tuning electronic transport in a self-assembled nanocomposite. ACS Nano, 2014, 8, 6242-9	16.7	14
168	Tuning phase stability of complex oxide nanocrystals via conjugation. <i>Nano Letters</i> , 2014 , 14, 3314-20	11.5	11
167	Giant enhancement of ferroelectric retention in BiFeO3 mixed-phase boundary. <i>Advanced Materials</i> , 2014 , 26, 6335-40	24	33

166	Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. <i>ACS Nano</i> , 2014 , 8, 6449-57	16.7	63
165	Emerging Multiferroic Memories 2014 , 103-166		2
164	Piezoelectric and piezomagnetic force microscopies of multiferroic BiFeO3-LiMn2O4 heterostructures. <i>Journal of Applied Physics</i> , 2014 , 116, 066805	2.5	9
163	Spin and phonon anomalies in epitaxial self-assembled CoFe2O4-BaTiO3 multiferroic nanostructures. <i>Applied Physics Letters</i> , 2014 , 104, 252905	3.4	9
162	Anisotropic strain, magnetic properties, and lattice dynamics in self-assembled multiferroic CoFe2O4-PbTiO3 nanostructures. <i>Journal of Applied Physics</i> , 2014 , 115, 134317	2.5	6
161	Dynamic magnetic interaction in La2/3Sr1/3MnO3/BiFeO3 heterostructure. <i>Applied Physics Letters</i> , 2014 , 105, 112406	3.4	6
160	Multifunctionalities driven by ferroic domains. <i>Journal of Applied Physics</i> , 2014 , 116, 066801	2.5	9
159	Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. <i>MRS Communications</i> , 2014 , 4, 31-44	2.7	25
158	In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. <i>Faraday Discussions</i> , 2014 , 176, 95-107	3.6	47
157	Atomic-Scale Visualization of Polarization Pinning and Relaxation at Coherent BiFeO3/LaAlO3 Interfaces. <i>Advanced Functional Materials</i> , 2014 , 24, 793-799	15.6	31
156	Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices. <i>ACS Nano</i> , 2013 , 7, 6806-15	16.7	38
155	Large magnetoresistance in magnetically coupled SrRuOIICoFeDIIself-assembled nanostructures. <i>Advanced Materials</i> , 2013 , 25, 4753-9	24	21
154	Probing local ionic dynamics in functional oxides at the nanoscale. <i>Nano Letters</i> , 2013 , 13, 3455-62	11.5	49
153	Direct observation of rotatable uncompensated spins in the exchange bias system Co/CoO-MgO. <i>Nanoscale</i> , 2013 , 5, 10236-41	7.7	24
152	A nanoscale shape memory oxide. <i>Nature Communications</i> , 2013 , 4, 2768	17.4	83
151	Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano, 2013, 7, 8627-33	16.7	39
150	Complex oxide-noble metal conjugated nanoparticles. Advanced Materials, 2013, 25, 2040-4	24	23
149	Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. <i>Nanoscale</i> , 2013 , 5, 6219-23	7.7	7

148	Domain wall functionality in BiFeO3. <i>Phase Transitions</i> , 2013 , 86, 53-66	1.3	50
147	Self-assembled perovskite-spinel heterostructure on a highly distorted substrate. <i>Applied Physics Letters</i> , 2013 , 102, 111903	3.4	11
146	Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures. <i>Applied Physics Letters</i> , 2013 , 102, 132905	3.4	30
145	Ferroelectric control of the conduction at the LaAlO/SrTiOIheterointerface. <i>Advanced Materials</i> , 2013 , 25, 3357-64	24	78
144	Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. <i>Nanoscale</i> , 2013 , 5, 4449-53	7.7	41
143	Nanosession: Ferroelectric Interfaces 2013 , 399-408		
142	Electromechanical coupling among edge dislocations, domain walls, and nanodomains in BiFeO3 revealed by unit-cell-wise strain and polarization maps. <i>Nano Letters</i> , 2013 , 13, 1410-5	11.5	65
141	Semipolar (11bar 2bar 2) ZnO thin films grown on LaAlO3-buffered LSAT (112) single crystals by pulsed laser deposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 293-296	2.5	6
140	Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. <i>Physical Review Letters</i> , 2013 , 111, 127601	7.4	84
139	Periodic elastic nanodomains in ultrathin tetragonal-like BiFeO3 films. <i>Physical Review B</i> , 2013 , 88,	3.3	20
138	Selective A- or B-site single termination on surfaces of layered oxide SrLaAlO4. <i>Applied Physics Letters</i> , 2013 , 102, 051603	3.4	8
137	Defects in semipolar (1122) ZnO grown on (112) LaAlO3/(La,Sr)(Al,Ta)O3 substrate by pulsed laser deposition. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 125801	1.8	4
136	Strain modulated optical properties in BiFeO3 thin films. <i>Applied Physics Letters</i> , 2013 , 103, 181907	3.4	31
135	Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite. <i>Physical Review B</i> , 2013 , 88,	3.3	28
134	Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films. <i>Applied Physics Letters</i> , 2013 , 102, 182904	3.4	31
133	Ultrathin limit of exchange bias coupling at oxide multiferroic/ferromagnetic interfaces. <i>Advanced Materials</i> , 2013 , 25, 4739-45	24	51
132	Epitaxial NiO nanocrystals: a dimensional analysis. MRS Communications, 2013, 3, 107-111	2.7	3
131	Effect of processing kinetics on the structure of ferromagnetic-ferroelectric-ferromagnetic interfaces. <i>Journal of Applied Physics</i> , 2012 , 112, 104102	2.5	5

130	Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. <i>ACS Nano</i> , 2012 , 6, 6952-9	16.7	59
129	Domain wall geometry controls conduction in ferroelectrics. <i>Nano Letters</i> , 2012 , 12, 5524-31	11.5	103
128	Nanoscale phase boundaries: a new twist to novel functionalities. <i>Nanoscale</i> , 2012 , 4, 6196-204	7.7	54
127	Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. <i>Physical Review Letters</i> , 2012 , 109, 047601	7.4	50
126	Orthorhombic BiFeO3. <i>Physical Review Letters</i> , 2012 , 109, 247606	7.4	87
125	Emergent phenomena at multiferroic heterointerfaces. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 4856-71	3	38
124	Tunable metallic conductance in ferroelectric nanodomains. <i>Nano Letters</i> , 2012 , 12, 209-13	11.5	131
123	Probing local electromechanical effects in highly conductive electrolytes. <i>ACS Nano</i> , 2012 , 6, 10139-46	16.7	12
122	Structural study in highly compressed BiFeO3 epitaxial thin films on YAlO3. <i>Journal of Applied Physics</i> , 2012 , 112, 052002	2.5	24
121	Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. <i>Nano Energy</i> , 2012 , 1, 424-428	17.1	40
120	Interface dipole between two metallic oxides caused by localized oxygen vacancies. <i>Physical Review B</i> , 2012 , 86,	3.3	50
119	Nanoscale characterization of emergent phenomena in multiferroics. <i>Current Opinion in Solid State and Materials Science</i> , 2012 , 16, 216-226	12	14
118	Magnetotransport at domain walls in BiFeO3. <i>Physical Review Letters</i> , 2012 , 108, 067203	7.4	120
117	Oxide interfaces: pathways to novel phenomena. <i>Materials Today</i> , 2012 , 15, 320-327	21.8	114
116	High-frequency electromechanical imaging of ferroelectrics in a liquid environment. <i>ACS Nano</i> , 2012 , 6, 5559-65	16.7	15
115	Taper PbZr(0.2)Ti(0.8)O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements. <i>ACS Nano</i> , 2012 , 6, 2826-32	16.7	23
114	Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. <i>Nanoscale</i> , 2012 , 4, 3175-83	7.7	34
113	Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films. <i>Applied Physics Letters</i> , 2012 , 101, 041902	3.4	39

112	Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction. <i>Physical Review B</i> , 2012 , 85,	3.3	66
111	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. <i>Physical Review B</i> , 2012 , 85,	3.3	60
110	Epitaxial Magnetic Oxide Nanocrystals Via Phase Decomposition of Bismuth Perovskite Precursors. <i>Advanced Functional Materials</i> , 2012 , 22, 5224-5230	15.6	24
109	Electrical control of multiferroic orderings in mixed-phase BiFeOIfilms. <i>Advanced Materials</i> , 2012 , 24, 3070-5	24	49
108	Local conduction at the BiFeO(3)-CoFe(2)O(4) tubular oxide interface. Advanced Materials, 2012, 24, 45	6448	68
107	Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. <i>Nature Communications</i> , 2012 , 3, 775	17.4	135
106	n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection. <i>Optics Letters</i> , 2012 , 37, 1112-4	3	10
105	Direct observation of ferroelectric polarization-modulated band bending at oxide interfaces. <i>Applied Physics Letters</i> , 2012 , 100, 122903	3.4	36
104	Mapping band alignment across complex oxide heterointerfaces. <i>Physical Review Letters</i> , 2012 , 109, 24	6 <mark>8047</mark>	63
103	Domain relaxation dynamics in epitaxial BiFeO3 films: Role of surface charges. <i>Journal of Applied Physics</i> , 2012 , 112, 052017	2.5	21
102	Electron paramagnetic resonance probed oxygen deficiency in SrTiO3 with different cap layers. Journal of Applied Physics, 2012 , 112, 123720	2.5	6
101	Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. <i>Applied Physics Letters</i> , 2012 , 101, 192902	3.4	48
100	Interface control of bulk ferroelectric polarization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9710-5	11.5	187
99	Phase evolution of magnetite nanocrystals on oxide supports via template-free bismuth ferrite precursor approach. <i>Journal of Applied Physics</i> , 2012 , 112, 104321	2.5	6
98	Non-volatile domain nucleation and growth in multiferroic BiFeO3 films. <i>Nanotechnology</i> , 2011 , 22, 254	103Д	26
97	Dynamic conductivity of ferroelectric domain walls in BiFeO[[Nano Letters, 2011 , 11, 1906-12	11.5	204
96	Misorientation control and functionality design of nanopillars in self-assembled perovskite-spinel heteroepitaxial nanostructures. <i>ACS Nano</i> , 2011 , 5, 4118-22	16.7	66
95	Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. <i>Physical Review Letters</i> , 2011 , 107, 217202	7.4	360

94	Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. <i>Nature Communications</i> , 2011 , 2, 225	17.4	140
93	Concurrent transition of ferroelectric and magnetic ordering near room temperature. <i>Nature Communications</i> , 2011 , 2, 567	17.4	124
92	Large field-induced strains in a lead-free piezoelectric material. <i>Nature Nanotechnology</i> , 2011 , 6, 98-102	28.7	271
91	Investigation of nanodomain pattern and piezoelectric behavior of mixed phases in epitaxial BiFeO3 films. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 3063-3071	6	9
90	Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO(3). <i>Physical Review Letters</i> , 2011 , 107, 147602	7.4	248
89	Effect of growth temperature on a-plane ZnO formation on r-plane sapphire. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2011 , 29, 03A110	2.9	2
88	Ultrafast Dynamics of BiFeO3 Thin Films Studied by Dual-Color Femtosecond Spectroscopy. <i>Journal of Superconductivity and Novel Magnetism</i> , 2011 , 24, 731-734	1.5	3
87	Atomic-scale evolution of local electronic structure across multiferroic domain walls. <i>Advanced Materials</i> , 2011 , 23, 1530-4	24	82
86	Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging. <i>Advanced Materials</i> , 2011 , 23, 2474-9	24	72
85	Nanoscale structure and mechanism for enhanced electromechanical response of highly Strained BiFeO3 thin films. <i>Advanced Materials</i> , 2011 , 23, 3170-5	24	130
84	Direct spectroscopic evidence of charge reversal at the Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 heterointerface. <i>Physical Review B</i> , 2011 , 83,	3.3	18
83	Exploring topological defects in epitaxial BiFeO3 thin films. ACS Nano, 2011, 5, 879-87	16.7	102
82	Nanoscale control of phase variants in strain-engineered BiFeO[]Nano Letters, 2011 , 11, 3346-54	11.5	70
81	Correlation between nanoscale and nanosecond resolved ferroelectric domain dynamics and local mechanical compliance. <i>Journal of Applied Physics</i> , 2011 , 109, 091607	2.5	4
80	Ferromagnetic enhancement of CE-type spin ordering in (Pr,Ca)MnO3. <i>Physical Review Letters</i> , 2011 , 106, 186404	7.4	24
79	Distribution of electronic reconstruction at the n-type LaAlO3/SrTiO3 interface revealed by hard x-ray photoemission spectroscopy. <i>Applied Physics Letters</i> , 2011 , 99, 262101	3.4	10
78	Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. <i>Nature Materials</i> , 2010 , 9, 309-14	27	344
77	Above-bandgap voltages from ferroelectric photovoltaic devices. <i>Nature Nanotechnology</i> , 2010 , 5, 143-	7 28.7	1212

(2009-2010)

76	Domain wall conductivity in La-doped BiFeO3. <i>Physical Review Letters</i> , 2010 , 105, 197603	7.4	319
75	Strain-driven phase transitions and associated dielectric/piezoelectric anomalies in BiFeO3 thin films. <i>Applied Physics Letters</i> , 2010 , 97, 152901	3.4	34
74	Domain pattern and piezoelectric response across polymorphic phase transition in strained bismuth ferrite films. <i>Applied Physics Letters</i> , 2010 , 97, 242906	3.4	17
73	Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films. <i>Physical Review B</i> , 2010 , 82,	3.3	6
72	Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3f0oFe2O4 nanostructures. <i>Applied Physics Letters</i> , 2010 , 97, 052902	3.4	55
71	Switching kinetics in epitaxial BiFeO3 thin films. <i>Journal of Applied Physics</i> , 2010 , 107, 084111	2.5	35
70	Probing the evolution of antiferromagnetism in multiferroics. <i>Physical Review B</i> , 2010 , 81,	3.3	68
69	Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach. ACS Nano, 2010, 4, 513	39 <u>⊧4.</u> 6∕	30
68	Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. <i>Physical Review Letters</i> , 2010 , 105, 087204	7.4	288
67	Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. <i>Physical Review Letters</i> , 2010 , 105, 027201	7.4	311
66	Direct Observation of Capacitor Switching Using Planar Electrodes. <i>Advanced Functional Materials</i> , 2010 , 20, 3466-3475	15.6	76
65	Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. <i>Materials Science and Engineering Reports</i> , 2010 , 68, 89-133	30.9	501
64	Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. <i>Physical Review B</i> , 2009 , 79,	3.3	69
63	Phenomenological analysis of domain width in rhombohedral BiFeO3 films. <i>Physical Review B</i> , 2009 , 80,	3.3	24
62	Optical properties and magnetochromism in multiferroic BiFeO3. <i>Physical Review B</i> , 2009 , 79,	3.3	130
61	Magnetism-induced ferroelectric polarization in the c-axis-oriented orthorhombic HoMnO3 thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 103923	2.5	9
60	Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3. <i>Applied Physics Letters</i> , 2009 , 94, 161905	3.4	41
59	Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect. <i>Physical Review Letters</i> , 2009 , 102, 177601	7.4	44

58	Orientation-dependent potential barriers in case of epitaxial PtBiFeO3BrRuO3 capacitors. <i>Applied Physics Letters</i> , 2009 , 94, 232902	3.4	56
57	Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite. <i>Advanced Functional Materials</i> , 2009 , 19, 2053-2063	15.6	58
56	Conduction at domain walls in oxide multiferroics. <i>Nature Materials</i> , 2009 , 8, 229-34	27	1048
55	Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. <i>Nature Materials</i> , 2009 , 8, 485	-93	426
54	Deterministic control of ferroelastic switching in multiferroic materials. <i>Nature Nanotechnology</i> , 2009 , 4, 868-75	28.7	299
53	Nanoscale control of domain architectures in BiFeO3 thin films. <i>Nano Letters</i> , 2009 , 9, 1726-30	11.5	188
52	Photovoltaic effects in BiFeO3. Applied Physics Letters, 2009, 95, 062909	3.4	429
51	A strain-driven morphotropic phase boundary in BiFeO3. <i>Science</i> , 2009 , 326, 977-80	33.3	956
50	Domain growth dynamics in single-domain-like BiFeO3 thin films. <i>Applied Physics Letters</i> , 2009 , 94, 1229	0384	27
49	Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. <i>Nature Materials</i> , 2008 , 7, 478-82	27	1099
48	Interface effects on the magnetoelectric properties of (00l)-oriented Pb(Zr0.5Ti0.5)O3/CoFe2O4 multilayer thin films. <i>Scripta Materialia</i> , 2008 , 59, 897-900	5.6	33
47	Linear and nonlinear optical properties of BiFeO3. Applied Physics Letters, 2008, 92, 121915	3.4	183
46	Nanoscale control of exchange bias with BiFeO3 thin films. <i>Nano Letters</i> , 2008 , 8, 2050-5	11.5	254
45	Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. <i>Applied Physics Letters</i> , 2008 , 92, 062910	3.4	100
44	Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. <i>Physical Review B</i> , 2008 , 78,	3.3	329
43	Photoconductivity in BiFeO3 thin films. <i>Applied Physics Letters</i> , 2008 , 92, 091905	3.4	389
42	Multiferroics and magnetoelectrics: thin films and nanostructures. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 434220	1.8	246
41	Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. <i>Physical Review Letters</i> , 2008 , 101, 107602	7.4	205

(2007-2008)

40	Linear and nonlinear optical properties of multifunctional PbVO3 thin films. <i>Applied Physics Letters</i> , 2008 , 92, 231915	3.4	23
39	Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite. <i>Applied Physics Letters</i> , 2008 , 93, 142901	3.4	57
38	Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. <i>Applied Physics Letters</i> , 2008 , 92, 102909	3.4	89
37	Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films. <i>Journal of Applied Physics</i> , 2008 , 103, 094111	2.5	64
36	Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. <i>Physical Review Letters</i> , 2008 , 100, 155703	7.4	76
35	Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. <i>Applied Physics Letters</i> , 2008 , 92, 022511	3.4	107
34	High speed piezoresponse force microscopy: . <i>Applied Physics Letters</i> , 2008 , 93, 072905	3.4	65
33	Ferroelectric size effects in multiferroic BiFeO3 thin films. <i>Applied Physics Letters</i> , 2007 , 90, 252906	3.4	167
32	Leakage mechanisms in BiFeO3 thin films. <i>Applied Physics Letters</i> , 2007 , 90, 072902	3.4	444
31	Epitaxial Multiferroic BiFeO3 Thin Films: Progress and Future Directions. <i>Ferroelectrics</i> , 2007 , 354, 167-	176	41
30	Magnetoelectric complex-oxide heterostructures. <i>Philosophical Magazine Letters</i> , 2007 , 87, 155-164	1	9
29	Domain Control in Multiferroic BiFeO3 through Substrate Vicinality. <i>Advanced Materials</i> , 2007 , 19, 2662	:- 2 666	216
28	Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20204-9	11.5	67
27	Recent Advances in Electromechanical Imaging on the Nanometer Scale: Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 5674-568	3 1 .4	17
26	Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. <i>Nanotechnology</i> , 2007 , 18, 405701	3.4	48
25	Planar electrode piezoelectric force microscopy to study electric polarization switching in BiFeO3. <i>Applied Physics Letters</i> , 2007 , 90, 202909	3.4	30
24	+Capacitance-voltage characteristics of BiFeO3BrTiO3GaN heteroepitaxial structures. <i>Applied Physics Letters</i> , 2007 , 91, 022909	3.4	49
23	Adsorption-controlled molecular-beam epitaxial growth of BiFeO3. <i>Applied Physics Letters</i> , 2007 , 91, 071922	3.4	80

22	Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. <i>Physical Review Letters</i> , 2007 , 99, 217601	7.4	96
21	Heteroepitaxially enhanced magnetic anisotropy in BaTiO3toFe2O4 nanostructures. <i>Applied Physics Letters</i> , 2007 , 90, 113113	3.4	83
20	Epitaxial integration of (0001) BiFeO3 with (0001) GaN. Applied Physics Letters, 2007, 90, 172908	3.4	63
19	Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films. <i>Journal of Applied Physics</i> , 2007 , 101, 114105	2.5	105
18	Controlling magnetism with multiferroics. <i>Materials Today</i> , 2007 , 10, 16-23	21.8	214
17	Room temperature exchange bias and spin valves based on BiFeO3BrRuO3BrTiO3Bi (001) heterostructures. <i>Applied Physics Letters</i> , 2007 , 91, 172513	3.4	98
16	Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films. <i>Advanced Materials</i> , 2006 , 18, 2307-2311	24	244
15	Self-Assembled Growth of BiFeO3toFe2O4 Nanostructures. <i>Advanced Materials</i> , 2006 , 18, 2747-2752	24	293
14	Multiferroic BiFeO3 films: domain structure and polarization dynamics. <i>Phase Transitions</i> , 2006 , 79, 991	-1:0317	185
13	Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. <i>Nature Materials</i> , 2006 , 5, 823-9	27	1054
12	MICROWAVE PROPERTIES OF BST AND BST/BMT THIN FILMS GROWN ON SAPPHIRE SUBSTRATE BY EVANESCENT MICROWAVE PROBE. <i>Integrated Ferroelectrics</i> , 2005 , 77, 45-50	0.8	2
11	Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. <i>Applied Physics Letters</i> , 2005 , 87, 102903	3.4	216
10	Low-temperature laser processes for synthesizing (100)-textured Pb(Zr,Ti)O3 thin films on Si substrate. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 1059-1063	2.6	3
9	Low-Temperature Deposition of Pb(Zr,Ti)O3Thin Films on Si Substrates Using Ba(Mg1/3Ta2/3)O3as Buffer Layer. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 5409-5413	1.4	4
8	Characteristics of Ba(Mg1BTa2B)O3 thin films prepared by pulsed laser deposition process and their effect on the growth of Pb(Zr1\(\text{PT}\) ix)O3 thin films. <i>Journal of Applied Physics</i> , 2004 , 96, 5701-5705	2.5	3
7	Characteristics of Pb(Zr, Ti)O3 Thin Films Deposited on Pt(Si) at Low Substrate Temperature by Using Ba(Mg1/3Ta2/3)O3 as Buffer Layer. <i>Integrated Ferroelectrics</i> , 2004 , 67, 3-12	0.8	1
6	Growth Behavior of (Pr2/3Ca1/3)MnO3 Layer and the Buffering Effect on Pb(Zr, Ti)O3 Thin Films. <i>Integrated Ferroelectrics</i> , 2004 , 67, 31-40	0.8	
5	Pulsed Laser Deposited Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Thin Films. <i>Integrated Ferroelectrics</i> , 2003 , 55, 915-922	0.8	

LIST OF PUBLICATIONS

4	Properties of Ba(Mg1/3Ta2/3)O3Thin Films Prepared by Pulsed-Laser Deposition. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 7428-7431	1.4	7
3	Low Temperature Process for Synthesis of (100) Textured Pb(Zr0.48Ti0.52)O3 Thin Films on Si Substrate by Laser Lift-Off Transferring Technique. <i>Integrated Ferroelectrics</i> , 2003 , 57, 1233-1240	0.8	3
2	Pulsed Laser Deposited Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Thin Films. <i>Integrated Ferroelectrics</i> , 2003 , 55, 887-894	0.8	
1	S incorporated RuO2-based nanorings for active and stable water oxidation in acid. <i>Nano Research</i> ,1	10	O