
Penny Nymark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4040727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Particle and Fibre Toxicology, 2020, 17, 16.	6.2	139
2	Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos―and histologyâ€related changes in lung cancer. Genes Chromosomes and Cancer, 2011, 50, 585-597.	2.8	124
3	Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology, 2013, 313, 38-48.	4.2	96
4	<i>CDK4</i> is a probable target gene in a novel amplicon at 12q13.3–q14.1 in lung cancer. Genes Chromosomes and Cancer, 2005, 42, 193-199.	2.8	76
5	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	4.1	74
6	Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics, 2007, 8, 62.	2.8	72
7	<i>In vitro</i> and <i>in vivo</i> genotoxic effects of straight versus tangled multi-walled carbon nanotubes. Nanotoxicology, 2016, 10, 794-806.	3.0	65
8	Towards FAIR nanosafety data. Nature Nanotechnology, 2021, 16, 644-654.	31.5	61
9	Identification of Specific Gene Copy Number Changes in Asbestos-Related Lung Cancer. Cancer Research, 2006, 66, 5737-5743.	0.9	57
10	A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions. Toxicological Sciences, 2018, 162, 264-275.	3.1	51
11	Molecular and genetic changes in asbestos-related lung cancer. Cancer Letters, 2008, 265, 1-15.	7.2	49
12	Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Particle and Fibre Toxicology, 2014, 11, 4.	6.2	49
13	Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small, 2020, 16, e1904749.	10.0	43
14	Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene, 2007, 26, 4730-4737.	5.9	42
15	Nanomaterial grouping: Existing approaches and future recommendations. NanoImpact, 2019, 16, 100182.	4.5	42
16	Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. Nanomaterials, 2020, 10, 750.	4.1	42
17	Safe innovation approach: Towards an agile system for dealing with innovations. Materials Today Communications, 2019, 20, 100548.	1.9	40
18	Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials, 2020, 10. 708.	4.1	38

PENNY NYMARK

#	Article	IF	CITATIONS
19	Introducing WikiPathways as a Data-Source to Support Adverse Outcome Pathways for Regulatory Risk Assessment of Chemicals and Nanomaterials. Frontiers in Genetics, 2018, 9, 661.	2.3	34
20	Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology, 2019, 13, 119-141.	3.0	32
21	Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data. Nanomaterials, 2020, 10, 903.	4.1	31
22	DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. British Journal of Cancer, 2009, 100, 1336-1342.	6.4	30
23	Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of â€~Omics' Data from Human Cell Cultures. ATLA Alternatives To Laboratory Animals, 2015, 43, 325-332.	1.0	29
24	Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 2008, 29, 913-917.	2.8	28
25	Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells. Nanotoxicology, 2015, 9, 624-635.	3.0	28
26	Nonâ€Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. Small, 2021, 17, e2007628.	10.0	27
27	Accumulation of genomic alterations in 2p16, 9q33.1 and 19p13 in lung tumours of asbestosâ€exposed patients. Molecular Oncology, 2013, 7, 29-40.	4.6	23
28	Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. Frontiers in Toxicology, 2021, 3, 653386.	3.1	22
29	Molecular Alterations at 9q33.1 and Polyploidy in Asbestos-Related Lung Cancer. Clinical Cancer Research, 2009, 15, 468-475.	7.0	21
30	toxFlow: A Web-Based Application for Read-Across Toxicity Prediction Using Omics and Physicochemical Data. Journal of Chemical Information and Modeling, 2018, 58, 543-549.	5.4	19
31	Toxic and Genomic Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse Outcome. Annals of the American Thoracic Society, 2018, 15, S91-S97.	3.2	18
32	In Vitro Threeâ€Ðimensional Liver Models for Nanomaterial DNA Damage Assessment. Small, 2021, 17, e2006055.	10.0	17
33	Systematic Organization of COVID-19 Data Supported by the Adverse Outcome Pathway Framework. Frontiers in Public Health, 2021, 9, 638605.	2.7	15
34	Understanding COVID-19 through adverse outcome pathways – 2nd CIAO AOP Design Workshop. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 351-357.	1.5	11
35	Enriching Nanomaterials Omics Data: An Integration Technique to Generate Biological Descriptors. Small Methods, 2017, 1, 1700139.	8.6	10
36	COVID-19 through Adverse Outcome Pathways: Building networks to better understand the disease – 3rd CIAO AOP Design Workshop. ALTEX: Alternatives To Animal Experimentation, 2022, , .	1.5	9

PENNY NYMARK

#	Article	IF	CITATIONS
37	Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements. Nanomaterials, 2021, 11, 639.	4.1	7
38	Reply to: Prospects and challenges for FAIR toxicogenomics data. Nature Nanotechnology, 2022, 17, 19-20.	31.5	4
39	A Community-Driven, Openly Accessible Molecular Pathway Integrating Knowledge on Malignant Pleural Mesothelioma. Frontiers in Oncology, 2022, 12, 849640.	2.8	4
40	ELIXIR and Toxicology: a community in development. F1000Research, 0, 10, 1129.	1.6	3
41	FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: a case study on in vitro Comet assay genotoxicity data. Computational Toxicology, 2021, 20, 100190.	3.3	2
42	Methods, models, mechanisms and metadata: Introducing the Nanotoxicology collection at F1000Research. F1000Research, 2021, 10, 1196.	1.6	2
43	60 Asbestos-associatedmalignancies in the lung and pleura show distinct genetic aberrations. Lung Cancer, 2006, 54, S15.	2.0	1
44	Development of a Liver Carcinoma Biomarker Panel in 3D HepG2 Liver Spheroids Following Exposure to Ag and Tio2 Nanomaterials. Toxicology Letters, 2021, 350, S60.	0.8	1
45	P2-015: Frequent DNA copy number gains in 2p in lung cancer. Journal of Thoracic Oncology, 2007, 2, S487.	1.1	0
46	P2-023: Promoter analysis of co-expressing genes after exposure to asbestos. Journal of Thoracic Oncology, 2007, 2, S491.	1.1	0
47	Abstract 627: Fiber-induced DNA damage response in human lung epithelial cells , 2013, , .		0
48	Chapter 11. Computational Modelling of Biological Responses to Engineered Nanomaterials. Issues in Toxicology, 2017, , 276-303.	0.1	0
49	Lung Cancer: Molecular Markers of Occupational Carcinogens. , 2020, , 227-238.		0