List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4040657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene–DNAzyme Based Biosensor for Amplified Fluorescence "Turn-On―Detection of Pb ²⁺ with a High Selectivity. Analytical Chemistry, 2011, 83, 5062-5066.	3.2	389
2	Selfâ€Standing CoP Nanosheets Array: A Threeâ€Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem, 2017, 4, 1840-1845.	1.7	345
3	Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10, 21617-21624.	2.8	312
4	Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9, 4793-4800.	2.8	268
5	A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Analytical and Bioanalytical Chemistry, 2015, 407, 369-377.	1.9	207
6	Highly efficient electrochemical ammonia synthesis <i>via</i> nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chemical Communications, 2018, 54, 5323-5325.	2.2	203
7	A Metal–Organic Framework as Selectivity Regulator for Fe ³⁺ and Ascorbic Acid Detection. Analytical Chemistry, 2019, 91, 12453-12460.	3.2	163
8	Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO 2 nanosheets. Talanta, 2017, 165, 136-142.	2.9	153
9	Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensors and Bioelectronics, 2015, 74, 909-914.	5.3	147
10	A MnCo ₂ S ₄ nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. Journal of Materials Chemistry A, 2017, 5, 17211-17215.	5.2	146
11	Copperâ€Nitride Nanowires Array: An Efficient Dualâ€Functional Catalyst Electrode for Sensitive and Selective Nonâ€Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry - A European Journal, 2017, 23, 4986-4989.	1.7	140
12	Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chemical Communications, 2017, 53, 5710-5713.	2.2	138
13	A Boric Acid-Functionalized Lanthanide Metal–Organic Framework as a Fluorescence "Turn-on―Probe for Selective Monitoring of Hg ²⁺ and CH ₃ Hg ⁺ . Analytical Chemistry, 2020, 92, 3366-3372.	3.2	135
14	NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Chemistry - A European Journal, 2017, 23, 4435-4441.	1.7	134
15	Ni(OH) ₂ Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 651-655.	5.5	123
16	A Cu ₃ P–CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reactions. Chemical Communications, 2017, 53, 12012-12015.	2.2	110
17	Determination of phthalate esters in environmental water by magnetic Zeolitic Imidazolate Framework-8 solid-phase extraction coupled with high-performance liquid chromatography. Journal of Chromatography A, 2015, 1409, 46-52.	1.8	108
18	Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosensors and Bioelectronics, 2016, 75, 383-388.	5.3	104

#	Article	IF	CITATIONS
19	Energy-efficient electrolytic hydrogen generation using a Cu ₃ P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers, 2017, 4, 420-423.	3.0	101
20	Cr ₂ O ₃ nanofiber: a high-performance electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2018, 54, 12848-12851.	2.2	100
21	A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes. Inorganic Chemistry Frontiers, 2018, 5, 344-347.	3.0	90
22	A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. Journal of Materials Chemistry A, 2017, 5, 7305-7308.	5.2	79
23	Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in a Ni ₃ S ₂ nanosheet array. Chemical Communications, 2018, 54, 10100-10103.	2.2	72
24	The role of <scp>l</scp> -histidine as molecular tongs: a strategy of grasping Tb ³⁺ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chemical Science, 2020, 11, 2407-2413.	3.7	71
25	Hydrazine-assisted electrolytic hydrogen production: CoS ₂ nanoarray as a superior bifunctional electrocatalyst. New Journal of Chemistry, 2017, 41, 4754-4757.	1.4	70
26	A label-free electrochemical biosensor for highly sensitive and selective detection of DNA via a dual-amplified strategy. Biosensors and Bioelectronics, 2014, 54, 442-447.	5.3	64
27	Replacing Oxygen Evolution with Hydrazine Oxidation at the Anode for Energyâ€Saving Electrolytic Hydrogen Production. ChemElectroChem, 2017, 4, 481-484.	1.7	63
28	Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission. Biosensors and Bioelectronics, 2016, 85, 76-82.	5.3	57
29	Facile synthesis of ZnO/CdS@ZIF-8 core–shell nanocomposites and their applications in photocatalytic degradation of organic dyes. RSC Advances, 2017, 7, 31365-31371.	1.7	54
30	Turn-on fluorescence detection of \hat{l}^2 -glucuronidase using RhB@MOF-5 as an ultrasensitive nanoprobe. Sensors and Actuators B: Chemical, 2019, 295, 1-6.	4.0	51
31	Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase. Biosensors and Bioelectronics, 2013, 50, 351-355.	5.3	50
32	A label-free DNAzyme fluorescence biosensor for amplified detection of Pb2+-based on cleavage-induced G-quadruplex formation. Talanta, 2016, 147, 302-306.	2.9	50
33	Core–Shell NiFe-LDH@NiFe-B _i Nanoarray: In Situ Electrochemical Surface Derivation Preparation toward Efficient Water Oxidation Electrocatalysis in near-Neutral Media. ACS Applied Materials & Interfaces, 2017, 9, 19502-19506.	4.0	48
34	Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Mikrochimica Acta, 2017, 184, 4367-4374.	2.5	47
35	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	3.0	46
36	Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission–silica nanospheres. Analytical and Bioanalytical Chemistry, 2017, 409, 5757-5765.	1.9	46

#	Article	IF	CITATIONS
37	Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer. Talanta, 2019, 194, 55-62.	2.9	44
38	A label-free fluorescence turn-on assay for glutathione detection by using MnO 2 nanosheets assisted aggregation-induced emission-silica nanospheres. Talanta, 2017, 169, 1-7.	2.9	41
39	Enhanced biosensing platform constructed using urchin-like ZnO-Au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies. Sensors and Actuators B: Chemical, 2018, 255, 1753-1761.	4.0	37
40	Detection of glutathione based on MnO2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter. Mikrochimica Acta, 2018, 185, 44.	2.5	37
41	A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: Application to aptamer-based determination of hepatitis B virus and of dopamine. Mikrochimica Acta, 2017, 184, 4417-4424.	2.5	36
42	Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Mikrochimica Acta, 2018, 185, 63.	2.5	34
43	In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosensors and Bioelectronics, 2020, 167, 112481.	5.3	33
44	Fe(TCNQ) ₂ Nanorod Array: A Conductive Non-Noble-Metal Electrocatalyst toward Water Oxidation in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2018, 6, 1545-1549.	3.2	31
45	Colorimetric detection of Hg(<scp>ii</scp>) based on the gold amalgam-triggered reductase mimetic activity in aqueous solution by employing AuNP@MOF nanoparticles. Analyst, The, 2020, 145, 1362-1367.	1.7	30
46	Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity. Analytica Chimica Acta, 2015, 887, 216-223.	2.6	29
47	Naphthalimide Derivative-Functionalized Metal–Organic Framework for Highly Sensitive and Selective Determination of Aldehyde by Space Confinement-Induced Sensitivity Enhancement Effect. Analytical Chemistry, 2021, 93, 8219-8227.	3.2	29
48	Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1666-1670.	2.0	28
49	A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites. Mikrochimica Acta, 2021, 188, 259.	2.5	28
50	o-Phenylenediamine/gold nanocluster-based nanoplatform for ratiometric fluorescence detection of alkaline phosphatase activity. Talanta, 2020, 212, 120768.	2.9	26
51	A superquenched DNAzyme–perylene complex: a convenient, universal and low-background strategy for fluorescence catalytic biosensors. Chemical Communications, 2013, 49, 6644.	2.2	24
52	Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle–gold nanocluster nanocomposites and oxidized 3,3′,5,5′-tetramethylbenzidine. Analyst, The, 2020, 145, 6254-6261.	1.7	24
53	Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection. Talanta, 2016, 155, 265-271.	2.9	23
54	A G-triplex based molecular beacon for label-free fluorescence "turn-on―detection of bleomycin. Analyst, The, 2018, 143, 5474-5480.	1.7	23

#	Article	IF	CITATIONS
55	Molecular beacon-templated silver nanoclusters as a fluorescent probe for determination of bleomycin via DNA scission. Mikrochimica Acta, 2018, 185, 403.	2.5	23
56	A carbon dot doped lanthanide coordination polymer nanocomposite as the ratiometric fluorescent probe for the sensitive detection of alkaline phosphatase activity. Analyst, The, 2021, 146, 2862-2870.	1.7	21
57	Sensitive fluorescence detection of heparin based on self-assembly of mesoporous silica nanoparticle–gold nanoclusters with emission enhancement characteristics. Analyst, The, 2018, 143, 5388-5394.	1.7	20
58	Ultra-sensitive label-free electrochemical detection of the acute leukaemia gene Pax-5a based on enzyme-assisted cycle amplification. Biosensors and Bioelectronics, 2019, 143, 111593.	5.3	20
59	Combination of pipette tip solid phase extraction and high performance liquid chromatography for determination of plant growth regulators in food samples based on the electrospun covalent organic framework/polyacrylonitrile nanofiber as highly efficient sorbent. Journal of Chromatography A. 2022, 1661, 462692.	1.8	19
60	Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods. Mikrochimica Acta, 2019, 186, 490.	2.5	17
61	A highly water-soluble, sensitive, coumarin-based fluorescent probe for detecting thiols, and its application in bioimaging. New Journal of Chemistry, 2017, 41, 15277-15282.	1.4	16
62	A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights. Talanta, 2016, 146, 549-555.	2.9	15
63	Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer. Mikrochimica Acta, 2019, 186, 740.	2.5	14
64	Simple and fast determination of catecholamines in pharmaceutical samples using Ag+–3,3′,5,5′-tetramethylbenzidine as a colorimetric probe. Analytical Methods, 2015, 7, 6785-6790.	1.3	13
65	Sensitive fluorescence "turn-on―detection of bleomycin based on a superquenched perylene–DNA complex. RSC Advances, 2015, 5, 86849-86854.	1.7	13
66	Hg2+-mediated stabilization of G-triplex based molecular beacon for label-free fluorescence detection of Hg2+, reduced glutathione, and glutathione reductase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117855.	2.0	13
67	A novel Cd-MOF with enhanced thermo-sensitivity: the rational design, synthesis and multipurpose applications. Inorganic Chemistry Frontiers, 2021, 8, 3096-3104.	3.0	13
68	An amplified fluorescence detection of T4 polynucleotide kinase activity based on coupled exonuclease III reaction and a graphene oxide platform. Analyst, The, 2015, 140, 1827-1831.	1.7	12
69	A label-free and fluorescence turn-on assay for sensitive detection of hyaluronidase based on hyaluronan-induced perylene self-assembly. New Journal of Chemistry, 2019, 43, 3383-3389.	1.4	10
70	Microfiber polarization modulation in response to protein induced self-assembly of functionalized magnetic nanoparticles. Applied Physics Letters, 2018, 113, .	1.5	9
71	A label-free G-quadruplex-based fluorescence assay for sensitive detection of alkaline phosphatase with the assistance of Cu2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117607.	2.0	9
72	Convenient and sensitive colorimetric detection of melamine in dairy products based on Cu(ii)-H2O2-3,3â€2,5,5â€2-tetramethylbenzidine system. RSC Advances, 2018, 8, 34877-34882.	1.7	8

#	Article	IF	CITATIONS
73	A DNAzyme-based normalized fluorescence strategy for direct quantification of endogenous zinc in living cells. Chemical Communications, 2022, 58, 577-580.	2.2	6
74	A Cell-Anchored and Self-Calibrated DNA Nanoplatform for in Situ Imaging and Quantification of Endogenous MicroRNA in Live Cells: Introducing Two Controls to Normalize the Sensing Signals. CCS Chemistry, 2023, 5, 176-190.	4.6	6
75	Facile synthesis of branched Au nanocrystals with sub-10-nm arms and their applications for ethanol oxidation reaction. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	4
76	Optimization of Release Conditions for Acetylated Amino Sugars from Glycoprotein with the Aid of Experimental Design and Their Sensitive Determination with HPLC. Chromatographia, 2017, 80, 861-872.	0.7	3
77	Long-wavelength emission carbon dots as self-ratiometric fluorescent nanoprobe for sensitive determination of Zn2+. Mikrochimica Acta, 2022, 189, 55.	2.5	3