Baochang Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4040412/baochang-sun-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 2,070 113 39 g-index h-index citations papers 115 5.12 2,531 5.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
113	Study on the Effective Mass Transfer Area and the Local Gas-Side Mass Transfer Coefficient in a RotorBtator Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 1523-1530	3.9	O
112	Desulfurization performance in a HiGee reactor with packing containing different fiber cross-sectional shapes. <i>Separation and Purification Technology</i> , 2022 , 287, 120536	8.3	O
111	Kinetic study of SO2 with sodium lactate based deep eutectic solvents and modelling of desulfurization intensification in rotating packed bed reactor. <i>Chemical Engineering Science</i> , 2022 , 248, 117197	4.4	O
110	Sulfur recycle in biogas production: Novel Higee desulfurization process using natural amino acid salts <i>Chemosphere</i> , 2022 , 134215	8.4	1
109	Polymerization of Isobutylene in a Rotating Packed Bed Reactor: Experimental and Modeling Studies. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 10194	2.6	
108	An Evaluation of Metronidazole Degradation in a Plasma-Assisted Rotating Disk Reactor Coupled with TiO2 in Aqueous Solution. <i>Engineering</i> , 2021 , 7, 1603-1603	9.7	2
107	Feasibility study on micromixing intensification in a spinning disk reactor utilizing heterogeneous surface wettability. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 108707	3.7	O
106	Oxygen mass transfer intensification in an inner-loop rotor-stator reactor: Production of sodium gluconate as an example. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 160, 108290	o ^{3.7}	4
105	Mechanism of Liquid Dispersion Enhancement by the Hydrophobic Wire Mesh at Macro- and Micro-Scale. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 8927-8934	3.9	
104	Characterization of petroleum sulfonate synthesized via gas-phase SO3 sulfonation in rotating packed bed and its application in enhanced oil recovery. <i>Chemical Engineering Science</i> , 2021 , 230, 11621	6 ^{4.4}	3
103	Investigation on Designing Meltblown Fibers for the Filtering Layer of a Mask by Cross-Scale Simulations. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 1962-1971	3.9	2
102	Liquid droplet dispersion in a rotating packed bed: Experimental and numerical studies. <i>Chemical Engineering Science</i> , 2021 , 240, 116675	4.4	5
101	Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: Absorption and desorption investigation. <i>Separation and Purification Technology</i> , 2021 , 269, 118714	8.3	7
100	Intensification of micromixing efficiency in a spinning disk reactor: Experimental investigation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 166, 108500	3.7	4
99	Flow behavior in a rotating packed bed reactor with single-layer mesh: Effect of fiber cross-sectional shape. <i>Chemical Engineering Science</i> , 2021 , 117147	4.4	2
98	Enhanced Regeneration of Triethylene Glycol Solution by Rotating Packed Bed for Offshore Natural Gas Dehydration Process: Experimental and Modeling Study. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 168, 108562	3.7	4
97	Rapid and continuous polymer dissolution by rotating packed bed for enhanced oil recovery. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 153, 107952	3.7	4

(2020-2020)

96	Hydrothermal controllable synthesis of hollow carbon particles: Reaction-growth mechanism. <i>Chemical Engineering Science</i> , 2020 , 225, 115787	4.4	3	
95	Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure. <i>Chemical Engineering Science</i> , 2020 , 219, 115593	4.4	10	
94	Can Masks Be Reused After Hot Water Decontamination During the COVID-19 Pandemic?. <i>Engineering</i> , 2020 , 6, 1115-1121	9.7	38	
93	Modeling for Temperature Distribution of Water in a Multiwaveguide Microwave Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 4762-4774	3.9	2	
92	Scale-Up of a Rotating Packed Bed Reactor with a Mesh-Pin Rotor: (I) Hydrodynamic Studies. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 5114-5123	3.9	7	
91	Scale-Up of a Rotating Packed Bed Reactor with a Mesh-Pin Rotor: (II) Mass Transfer and Application. <i>Industrial & Description of the Engineering Chemistry Research</i> , 2020 , 59, 5124-5132	3.9	6	
90	Intensified regeneration performance of spent caustic from LPG sweetening by HiGee reactor. <i>Chemical Engineering Research and Design</i> , 2020 , 156, 281-288	5.5	1	
89	Process Intensification of Quasi-Homogeneous Catalytic Hydrogenation in a Rotating Packed Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 1383-1392	3.9	6	
88	Experimental investigation of effective gas-liquid specific interfacial area in a rotor-stator reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 148, 107801	3.7	6	
87	Process intensification of 2,3,6-trimethylphenol oxidation in a rotating packed bed reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 149, 107842	3.7	5	
86	Wetting Behavior of the Stainless Steel Wire Mesh with Al2O3 Coatings and Mass Transfer Intensification in a Rotating Packed Bed. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 13	74 ² †382	2 ¹⁰	
85	Three-dimensional large eddy simulation of wave characteristics of liquid film flow in a spinning disk reactor. <i>AICHE Journal</i> , 2020 , 66, e16894	3.6	3	
84	Novel Wire Mesh Packing with Controllable Cross-Sectional Area in a Rotating Packed Bed: Mass Transfer Studies. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16043-16051	3.9	10	
83	Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing. <i>Chemical Engineering Journal</i> , 2020 , 386, 121537	14.7	15	
82	Liquid microflow inside the packing of a rotating packed bed reactor: Computational, observational and experimental studies. <i>Chemical Engineering Journal</i> , 2020 , 386, 121134	14.7	20	
81	Using dielectric barrier discharge and rotating packed bed reactor for NOx removal. <i>Separation and Purification Technology</i> , 2020 , 235, 116141	8.3	10	
80	Preparation of cordierite monolithic catalyst for Emethylstyrene hydrogenation in a rotating packed bed reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 150, 107882	3.7	3	
79	Simultaneous Absorption of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. <i>Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in a Rotating Packed Bed. Industrial & Description of H2S and CO2 into the MDEA + PZ Aqueous Solution in the MDEA + PZ Aqueous Solutio</i>	3.9	11	

78	NOx removal in a rotating packed bed: Oxidation and enhanced absorption process optimization. <i>Separation and Purification Technology</i> , 2019 , 227, 115682	8.3	10
77	Desulfurization of Offshore Natural Gas by Chelated Iron Solution in a HiGee Reactor: A Feasibility Study. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 10629-10634	3.9	7
76	Enhancement of CO2 Absorption into K2CO3 Solution by Cyclohexane in a High-Shear Reactor. <i>Energy & Energy & En</i>	4.1	6
75	Effective Mass Transfer Area Measurement Using a CO2NaOH System: Impact of Different Sources of Kinetics Models and Physical Properties. <i>Industrial & Engineering Chemistry Research</i> , 2019, 58, 11082-11092	3.9	9
74	Initial liquid dispersion and mass transfer performance in a rotating packed bed. <i>Chemical Engineering and Processing: Process Intensification</i> , 2019 , 140, 136-141	3.7	13
73	Simultaneous Absorption of NOx and SO2 into Na2SO3 Solution in a Rotating Packed Bed with Preoxidation by Ozone. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 8332-8341	3.9	18
72	Mass transfer in a rotating packed bed reactor with a mesh-pin rotor: Modeling and experimental studies. <i>Chemical Engineering Journal</i> , 2019 , 369, 600-610	14.7	22
71	Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor. <i>AICHE Journal</i> , 2019 , 65, e16597	3.6	24
70	Study on phenol sulfonation by concentrated sulfuric acid: Kinetics and process optimization. <i>Chemical Engineering Science</i> , 2019 , 202, 15-25	4.4	8
69	CFD Simulation and High-Speed Photography of Liquid Flow in the Outer Cavity Zone of a Rotating Packed Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5280-5290	3.9	12
68	A three-zone mass transfer model for a rotating packed bed. AICHE Journal, 2019, 65, e16595	3.6	15
67	Synthesis of carbon materials with different morphologies by solvothermal method with premixing. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 2447-2452	2.3	1
66	Plasma-Assisted Rotating Disk Reactor toward Disinfection of Aquatic Microorganisms. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 13977-13986	3.9	1
65	Synthesis of ZSM-5 by hydrothermal method with pre-mixing in a stirred-tank reactor. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 3063-3073	2.3	5
64	Porous PdO-Flower Induced by Nanomicrostructure on Monolith with Traditional Immersion-Pyrolysis Technique for Hydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 14646-14654	3.9	3
63	Dispersion and hydrogenation property of nano-Ni in ethanol solution in a stirring tank reactor. <i>Chemical Engineering Journal</i> , 2019 , 377, 119826	14.7	2
62	Efficient Coating Method via Matching Rough Surface of Stainless Steel with Al2O3 Particles. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1848-1856	3.9	5
61	Controllable wettability on stainless steel substrates with highly stable coatings. <i>Chemical Engineering Science</i> , 2019 , 195, 791-800	4.4	10

(2017-2019)

60	Reactor. <i>Energy & Description CO2</i> Capture from Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using a Rotating Packed Bed Reactor. <i>Energy & Description CO2</i> Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action CO2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natural Gas Power Plants Using Action Co2 Capture From Natura Gas Power From Natura	4.1	10
59	Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor. <i>Chemical Engineering Journal</i> , 2019 , 377, 119929	14.7	3
58	Mass transfer study of water deoxygenation in a rotorBtator reactor based on principal component regression method. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 677-685	5.5	13
57	Flue-Gas Desulfurization by Using a HiGee Electric-Field Device. <i>Chemical Engineering and Technology</i> , 2018 , 41, 860-866	2	1
56	Synthesis of Nano-Ni by Liquid Reduction Method in a Combined Reactor of Rotating Packed Bed and Stirred Tank Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3908-3913	3.9	8
55	Mass Transfer Study of Dehydration by Triethylene Glycol in Rotating Packed Bed for Natural Gas Processing. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 5394-5400	3.9	13
54	Removal of SO2 with Sodium Sulfite Solution in a Rotating Packed Bed. <i>Industrial & amp; Engineering Chemistry Research</i> , 2018 , 57, 2329-2335	3.9	23
53	Gas-Side Mass Transfer in a Rotating Packed Bed with Structured Nickel Foam Packing. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4743-4747	3.9	22
52	Feasibility studies of micromixing and mass-transfer in an ultrasonic assisted rotating packed bed reactor. <i>Chemical Engineering Journal</i> , 2018 , 331, 510-516	14.7	19
51	Microwave-assisted fast and efficient dissolution of silkworm silk for constructing fibroin-based biomaterials. <i>Chemical Engineering Science</i> , 2018 , 189, 286-295	4.4	11
50	Study on the Synthesis of 2,3,5-Trimethyl-1,4-Benzoquinone by an RSR+STR Tandem Process. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 13381-13386	3.9	3
49	Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed. <i>Fuel</i> , 2018 , 234, 1518-1527	7.1	21
48	Visual Study of Liquid Flow in a Spinning Disk Reactor with a Hydrophobic Surface. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 7692-7699	3.9	8
47	Study on the removal of fine particles by using water in a rotating packed bed. <i>Canadian Journal of Chemical Engineering</i> , 2017 , 95, 1063-1068	2.3	9
46	3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing. <i>Chemical Engineering Science</i> , 2017 , 170, 365-377	4.4	37
45	Mass Transfer Characteristics in a Rotor-Stator Reactor. <i>Chemical Engineering and Technology</i> , 2017 , 40, 1078-1083	2	10
44	Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed. <i>Fuel</i> , 2017 , 204, 47-53	7.1	43
43	A hydrophobic wire mesh for better liquid dispersion in air. <i>Chemical Engineering Science</i> , 2017 , 170, 20-	4 _z 2,1 ₂	26

42	Study on the Removal of Fine Particles from Gas Steam Using Water in a Rotating Packed Bed Combined with a Charged Device. <i>Energy & Device</i> , 2017, 31, 1764-1770	4.1	7
41	Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed. <i>Chemical Engineering Science</i> , 2017 , 170, 355-364	4.4	35
40	Mass-Transfer Performance for CO2 Absorption by 2-(2-Aminoethylamino)ethanol Solution in a Rotating Packed Bed. <i>Energy & amp; Fuels</i> , 2017 , 31, 14053-14059	4.1	18
39	High water content silk protein-based hydrogels with tunable elasticity fabricated via a Ru(II) mediated photochemical cross-linking method. <i>Fibers and Polymers</i> , 2017 , 18, 1831-1840	2	11
38	Gas Flow Characteristics in a Rotating Packed Bed by Particle Image Velocimetry Measurement. <i>Industrial & Description of the Property of the State </i>	3.9	16
37	Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing. <i>Chemical Engineering Science</i> , 2017 , 170, 347-354	4.4	47
36	Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study. <i>Chemical Engineering Science</i> , 2017 , 158, 429-438	4.4	77
35	Absorption of Nitrogen Oxides into Sodium Hydroxide Solution in a Rotating Packed Bed with Preoxidation by Ozone. <i>Energy & amp; Fuels</i> , 2017 , 31, 11019-11025	4.1	31
34	Polytetrafluoroethylene Wire Mesh Packing in a Rotating Packed Bed: Mass-Transfer Studies. <i>Industrial & Description of the Mass-Transfer Studies</i> . <i>Industrial & Description of the Mass-Transfer Studies</i> . <i>Industrial & Description of the Mass-Transfer Studies</i> .	3.9	38
33	Synthesis of heavy alkyl benzene sulfonate in a rotating packed bed combined with a stirred tank reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 110, 123-127	3.7	10
32	Treatment of wastewater containing o-phenylenediamine by ozone in a rotor-stator reactor. <i>Water Science and Technology</i> , 2016 , 73, 1357-63	2.2	14
31	CFD modeling of gasIlquid mass transfer process in a rotating packed bed. <i>Chemical Engineering Journal</i> , 2016 , 294, 111-121	14.7	52
30	Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. <i>Chemical Engineering Journal</i> , 2016 , 285, 236-242	14.7	53
29	Mass-Transfer Characteristics of the CO2 Absorption Process in a Rotating Packed Bed. <i>Energy & Energy Fuels</i> , 2016 , 30, 4215-4220	4.1	30
28	Numerical simulation for mass transfer characteristics of CO2 capture in a rotating packed bed. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 109, 68-79	3.7	8
27	Study on the hydrodynamic characteristics of a rotor-stator reactor by electrical conductance and response time technique. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 109, 158-16	5 3 ·7	10
26	Mass-Transfer Performance of CO2 Absorption with Aqueous Diethylenetriamine-Based Solutions in a Packed Column with Dixon Rings. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 10788-	10993	9
25	Preparation of basic magnesium carbonate by simultaneous absorption of NH3 and CO2 into MgCl2 solution in an RPB. <i>Powder Technology</i> , 2015 , 284, 57-62	5.2	17

24	Visual study of liquid flow in a rotor-stator reactor. <i>Chemical Engineering Science</i> , 2015 , 134, 521-530	4.4	34
23	A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed. <i>Chemical Engineering Science</i> , 2015 , 138, 244-255	4.4	68
22	SO2 Removal in a Pilot Scale Rotating Packed Bed. <i>Environmental Engineering Science</i> , 2015 , 32, 806-815	52	14
21	Absorption of ammonia into water-in-oil microemulsion in a rotor-stator reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 87, 68-74	3.7	12
20	A study on the absorption of ammonia into water in a rotor-stator reactor. <i>Canadian Journal of Chemical Engineering</i> , 2015 , 93, 116-120	2.3	14
19	Micromixing Efficiency Enhancement in a Rotating Packed Bed Reactor with Surface-Modified Nickel Foam Packing. <i>Industrial & amp; Engineering Chemistry Research</i> , 2015 , 54, 1697-1702	3.9	43
18	Synthesis of nano-Ce0.5Zr0.5O2 by absorption of ammonia into water-in-oil microemulsion in a rotorBtator reactor. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	9
17	Absorption of SO2 with Ammonia-Based Solution in a Cocurrent Rotating Packed Bed. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 15731-15737	3.9	36
16	Oxidation of ammonium sulfite by oxygen in a microporous tube-in-tube microchannel reactor. <i>Chemical Engineering Journal</i> , 2014 , 253, 258-263	14.7	12
15	Ozonation of Acid Red 14 in the Presence of Inorganic Salts in a Microporous Tube-in-Tube Microchannel Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 19071-19076	3.9	13
14	Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. <i>Chemical Engineering Journal</i> , 2013 , 229, 404-411	14.7	98
13	Study on the synthesis of organized mesoporous alumina in a rotating packed bed. <i>Materials Research Bulletin</i> , 2013 , 48, 290-294	5.1	2
12	Distillation studies in a two-stage counter-current rotating packed bed. <i>Separation and Purification Technology</i> , 2013 , 102, 62-66	8.3	45
11	The Advanced Oxidation Process of Phenol Solution by O3/H2O2 in a Rotating Packed Bed. <i>Ozone: Science and Engineering</i> , 2013 , 35, 101-108	2.4	18
10	GasIliquid Effective Interfacial Area in a Rotating Packed Bed. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2012 , 51, 16320-16325	3.9	84
9	Ozonation of Phenol with O3/Fe(II) in Acidic Environment in a Rotating Packed Bed. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10509-10516	3.9	41
8	Determination of Mass-Transfer Coefficient of CO2 in NH3 and CO2 Absorption by Materials Balance in a Rotating Packed Bed. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10949-109	<i>3</i> 49	14
7	Mass Transfer Studies in a Rotating Packed Bed with Novel Rotors: Chemisorption of CO2. Industrial & Company	3.9	67

6	Characteristics of a two-stage counter-current rotating packed bed for continuous distillation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 52, 55-62	3.7	66
5	Ozonation of azo dye Acid Red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism. <i>Chemosphere</i> , 2012 , 89, 190-7	8.4	51
4	Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. <i>Chemical Engineering Journal</i> , 2011 , 168, 731-736	14.7	65
3	Determination of the effective interfacial area in rotating packed bed. <i>Chemical Engineering Journal</i> , 2011 , 168, 1377-1382	14.7	84
3		3.9	84