Jaewon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4040150/publications.pdf

Version: 2024-02-01

430442 301761 1,563 45 18 39 h-index citations g-index papers 47 47 47 2833 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hollow Silica Nanocontainers as Drug Delivery Vehicles. Langmuir, 2008, 24, 3417-3421.	1.6	230
2	Smart Drug‣oaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Advanced Materials, 2009, 21, 4339-4342.	11.1	151
3	Bio-Inspired, Melanin-Like Nanoparticles as a Highly Efficient Contrast Agent for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging. Biomacromolecules, 2013, 14, 3491-3497.	2.6	138
4	Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science, 2020, 367, 40-45.	6.0	136
5	Multifunctional Magnetic Gold Nanocomposites: Human Epithelial Cancer Detection via Magnetic Resonance Imaging and Localized Synchronous Therapy. Advanced Functional Materials, 2008, 18, 258-264.	7.8	123
6	pH-responsive polymeric micelle based on PEG-poly(\hat{l}^2 -amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. Journal of Controlled Release, 2011, 155, 11-17.	4.8	106
7	Magnetiteâ€Nanoparticleâ€Encapsulated pHâ€Responsive Polymeric Micelle as an MRI Probe for Detecting Acidic Pathologic Areas. Small, 2010, 6, 1201-1204.	5.2	95
8	The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials, 2012, 33, 9157-9164.	5.7	95
9	Retargeting of adenoviral gene delivery via Herceptin–PEG–adenovirus conjugates to breast cancer cells. Journal of Controlled Release, 2007, 123, 164-171.	4.8	51
10	Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements. ACS Nano, 2018, 12, 12778-12787.	7.3	34
11	Edge Dislocations Induce Improved Photocatalytic Efficiency of Colored TiO ₂ . Advanced Materials Interfaces, 2019, 6, 1901121.	1.9	30
12	Double-Tube Reactor Design and Process Optimization for On-Site Steam Methane Reforming Processes. Industrial & Engineering Chemistry Research, 2020, 59, 18028-18038.	1.8	30
13	Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer, 2011, 52, 3304-3310.	1.8	29
14	Radioluminescent nanoparticles for radiation-controlled release of drugs. Journal of Controlled Release, 2019, 303, 237-252.	4.8	23
15	Highly Selective Supported Graphene Oxide Membranes for Water-Ethanol Separation. Scientific Reports, 2019, 9, 2251.	1.6	22
16	Magnetic sensitivity enhanced novel fluorescent magnetic silica nanoparticles for biomedical applications. Nanotechnology, 2008, 19, 075610.	1.3	21
17	Block Copolymer-Encapsulated CaWO ₄ Nanoparticles: Synthesis, Formulation, and Characterization. ACS Applied Materials & Description (1988) amp; Interfaces, 2016, 8, 8608-8619.	4.0	20
18	Interplay between Short―and Longâ€Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice. Small, 2019, 15, 1901966.	5.2	19

#	Article	IF	CITATIONS
19	Nontoxic Formulations of Scintillation Nanocrystals for Use as X-ray Computed Tomography Contrast Agents. Bioconjugate Chemistry, 2017, 28, 171-182.	1.8	18
20	PEG–PLA-Coated and Uncoated Radio-Luminescent CaWO ₄ Micro- and Nanoparticles for Concomitant Radiation and UV-A/Radio-Enhancement Cancer Treatments. ACS Biomaterials Science and Engineering, 2018, 4, 1445-1462.	2.6	18
21	Hetero-nanostructured materials for high-power lithium ion batteries. Journal of Colloid and Interface Science, 2018, 529, 505-519.	5.0	18
22	Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Research, 2016, 9, 996-1004.	5.8	16
23	Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer. Bulletin of the Korean Chemical Society, 2009, 30, 869-872.	1.0	15
24	Gold-layered calcium phosphate plasmonic resonants for localized photothermal treatment of human epithelial cancer. Journal of Materials Chemistry, 2009, 19, 2902.	6.7	14
25	Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells. International Journal of Nanomedicine, 2015, 10, 261.	3.3	14
26	Folic Acid-Conjugated Radioluminescent Calcium Tungstate Nanoparticles as Radio-Sensitizers for Cancer Radiotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 4776-4789.	2.6	13
27	Evaluation of Antiangiogenic Effects of a New Synthetic Candidate Drug KR-31831 on Xenografted Ovarian Carcinoma Using Dynamic Contrast Enhanced MRI. Korean Journal of Radiology, 2011, 12, 602.	1.5	12
28	Synthesis of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles for advanced lithium-ion battery anode materials. Nano Research, 2017, 10, 1033-1043.	5.8	12
29	<i>In situ</i> characterization of kinetics and mass transport of PbSe nanowire growth <i>via</i> LS and VLS mechanisms. Nanoscale, 2019, 11, 5874-5878.	2.8	9
30	Laser-Induced CO ₂ Generation from Gold Nanorod-Containing Poly(propylene) Tj ETQq0 0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 rgBT /Ov Materials & Discourse (propylene) Tj ETQq0 rgBT /Ov Mater		Tf 50 307 T 8
31	Unexpected conformational behavior of poly(poly(ethylene glycol) methacrylate)-poly(propylene) Tj ETQq1 1 0.78 copolymers in micellar solution and at the air-water interface. Journal of Colloid and Interface Science, 2020, 566, 304-315.		Overlock 1
32	Numerical analysis of hydrogen ventilation in a confined facility with various opening sizes, positions and leak quantities. Computer Aided Chemical Engineering, 2017, 40, 559-564.	0.3	6
33	Palladium nanostructures with well-controlled morphologies obtained by one-pot and one-step polyol method. Journal of Crystal Growth, 2019, 521, 34-40.	0.7	6
34	Atomic Gradient Structure Alters Electronic Structure in 3D across the Bulk and Enhances Photoactivity. Advanced Energy Materials, 2021, 11, 2003548.	10.2	5
35	Nanoparticle contrast agents for Terahertz medical imaging. , 2008, , .		4
36	CO2-producing polymer micelles. Polymer Degradation and Stability, 2015, 120, 149-157.	2.7	4

#	Article	IF	Citations
37	Nucleation and growth of PbSeO3, Pb3(CO3)2(OH)2, and Se on the PbSe surfaces by decomposing PbSe in water. Inorganic Chemistry Communication, 2020, 118, 107989.	1.8	3
38	Pilot-Scale Optimization of the Solvent Exchange Production and Lyophilization Processing of PEG–PLA Block Copolymer-Encapsulated CaWO⟨sub⟩4⟨sub⟩ Radioluminescent Nanoparticles for Theranostic Applications. Industrial & Engineering Chemistry Research, 2021, 60, 7081-7096.	1.8	2
39	Effect of radial distribution of injected flow on simulated moving bed performance. Journal of Chromatography A, 2022, 1662, 462703.	1.8	2
40	Functionalized polymer dielectrics for low-operating voltage organic field-effect transistors. Journal of Materials Research, 2022, 37, 1547-1557.	1.2	2
41	Using In situ Gas Heating TEM to Investigate Compound Nanowire Growth Mechanisms. Microscopy and Microanalysis, 2019, 25, 1426-1427.	0.2	0
42	Real-time Investigation of Nanoparticle Self-assembly Mechanisms and Its Controlling Factors. Microscopy and Microanalysis, 2019, 25, 1416-1417.	0.2	0
43	Hydrationâ€Driven Superlattices: Interplay between Short―and Longâ€Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice (Small 33/2019). Small, 2019, 15, 1970175.	5.2	0
44	Defect-induced anisotropic surface reactivity and ion transfer processes of anatase nanoparticles. Materials Today Chemistry, 2020, 17, 100290.	1.7	0
45	Atomic Gradient Structures: Atomic Gradient Structure Alters Electronic Structure in 3D across the Bulk and Enhances Photoactivity (Adv. Energy Mater. 13/2021). Advanced Energy Materials, 2021, 11, 2170052.	10.2	0