
Guillaume Dalmasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4039835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yersiniabactin Siderophore of Crohn's Disease-Associated Adherent-Invasive Escherichia coli Is Involved in Autophagy Activation in Host Cells. International Journal of Molecular Sciences, 2021, 22, 3512.	1.8	5
2	Colibactin-Producing Escherichia coli Induce the Formation of Invasive Carcinomas in a Chronic Inflammation-Associated Mouse Model. Cancers, 2021, 13, 2060.	1.7	19
3	Host Colonization as a Major Evolutionary Force Favoring the Diversity and the Emergence of the Worldwide Multidrug-Resistant <i>Escherichia coli</i> ST131. MBio, 2021, 12, e0145121.	1.8	13
4	Propionate catabolism by CD-associated adherent-invasive <i>E. coli</i> counteracts its anti-inflammatory effect. Gut Microbes, 2021, 13, 1-18.	4.3	22
5	Autophagy of Intestinal Epithelial Cells Inhibits Colorectal Carcinogenesis Induced by Colibactin-Producing Escherichia coli in Apc Mice. Gastroenterology, 2020, 158, 1373-1388.	0.6	53
6	Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Frontiers in Microbiology, 2020, 11, 2065.	1.5	77
7	Differential miRNA-Gene Expression in M Cells in Response to Crohn's Disease-Associated AIEC. Microorganisms, 2020, 8, 1205.	1.6	2
8	Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent <i>Klebsiella pneumoniae</i> , France. Emerging Infectious Diseases, 2020, 26, 1529-1533.	2.0	18
9	Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 2020, 580, 269-273.	13.7	587
10	Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn's disease-associated adherent-invasive <i>E. coli</i> . Gut Microbes, 2020, 11, 1677-1694.	4.3	22
11	Metabolic adaptation of adherent-invasive Escherichia coli to exposure to bile salts. Scientific Reports, 2019, 9, 2175.	1.6	53
12	Crohn's Disease-Associated Adherent-Invasive Escherichia coli Manipulate Host Autophagy by Impairing SUMOylation. Cells, 2019, 8, 35.	1.8	26
13	Colibactin: More Than a New Bacterial Toxin. Toxins, 2018, 10, 151.	1.5	159
14	AIEC infection triggers modification of gut microbiota composition in genetically predisposed mice, contributing to intestinal inflammation. Scientific Reports, 2018, 8, 12301.	1.6	50
15	Impact of CDT Toxin on Human Diseases. Toxins, 2016, 8, 220.	1.5	51
16	The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated <i>Escherichia coli</i> . Cellular Microbiology, 2016, 18, 617-631.	1.1	64
17	MCR-1 in ESBL-producingEscherichia coliresponsible for human infections in New Caledonia. Journal of Antimicrobial Chemotherapy, 2016, 72, dkw508.	1.3	8
18	Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut, 2016, 65, 278-285.	6.1	67

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
20	Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive <i>Escherichia coli</i> infection. Autophagy, 2016, 12, 770-783.	4.3	54
21	Evaluation of the efficiency of cefoxitin/cefepime combination against Enterobacteriaceae resistant to expanded-spectrum cephalosporins. International Journal of Antimicrobial Agents, 2015, 45, 86-87.	1.1	2
22	The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes, 2014, 5, 675-680.	4.3	206
23	Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 2014, 63, 1932-1942.	6.1	354
24	Crohn's Disease–Associated Adherent Invasive Escherichia coli Modulate Levels of microRNAs in Intestinal Epithelial Cells to Reduce Autophagy. Gastroenterology, 2014, 146, 508-519.	0.6	230
25	Chromosome-mediated OXA-48 carbapenemase in highly virulent Escherichia coli. Journal of Antimicrobial Chemotherapy, 2013, 68, 1558-1561.	1.3	30
26	Intestinal epithelial cell-specific CD98 expression regulates tumorigenesis in ApcMin/+ mice. Laboratory Investigation, 2012, 92, 1203-1212.	1.7	9
27	Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17448-17453.	3.3	67
28	Analysis of Structure–Function Relationships in the Colibactin-Maturating Enzyme ClbP. Journal of Molecular Biology, 2012, 424, 203-214.	2.0	63
29	Notch1 Regulates the Effects of Matrix Metalloproteinase-9 on Colitis-Associated Cancer in Mice. Gastroenterology, 2011, 141, 1381-1392.	0.6	35
30	The PepT1–NOD2 Signaling Pathway Aggravates Induced Colitis in Mice. Gastroenterology, 2011, 141, 1334-1345.	0.6	50
31	CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. Journal of Clinical Investigation, 2011, 121, 1733-1747.	3.9	102
32	MicroRNA-92b regulates expression of the oligopeptide transporter PepT1 in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2011, 300, G52-G59.	1.6	53
33	Functional TNFα gene silencing mediated by polyethyleneimine/TNFα siRNA nanocomplexes in inflamed colon. Biomaterials, 2011, 32, 1218-1228.	5.7	136
34	Overexpression of Ste20-Related Proline/Alanine-Rich Kinase Exacerbates Experimental Colitis in Mice. Journal of Immunology, 2011, 187, 1496-1505.	0.4	39
35	Nanomedicine in GI. American Journal of Physiology - Renal Physiology, 2011, 300, G371-G383.	1.6	78
36	Microbiota Modulate Host Gene Expression via MicroRNAs. PLoS ONE, 2011, 6, e19293.	1.1	144

Guillaume Dalmasso

#	Article	IF	CITATIONS
37	Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nature Materials, 2010, 9, 923-928.	13.3	595
38	Adenosine 2B Receptor Expression Is Post-transcriptionally Regulated by MicroRNA. Journal of Biological Chemistry, 2010, 285, 18184-18190.	1.6	30
39	PepT1 mediates transport of the proinflammatory bacterial tripeptide <scp>I</scp> -Ala-γ- <scp>d</scp> -Glu- <i>meso</i> -DAP in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G687-G696.	1.6	59
40	MicroRNA-7 Modulates CD98 Expression during Intestinal Epithelial Cell Differentiation. Journal of Biological Chemistry, 2010, 285, 1479-1489.	1.6	95
41	MicroRNAs determine human intestinal epithelial cell fate. Differentiation, 2010, 80, 147-154.	1.0	53
42	Drug-Loaded Nanoparticles Targeted to the Colon With Polysaccharide Hydrogel Reduce Colitis in a Mouse Model. Gastroenterology, 2010, 138, 843-853.e2.	0.6	200
43	Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection. PLoS ONE, 2010, 5, e8925.	1.1	82
44	Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis. PLoS ONE, 2009, 4, e6073.	1.1	318
45	Adenosine 2B receptors (A _{2B} AR) on enteric neurons regulate murine distal colonic motility. FASEB Journal, 2009, 23, 2727-2734.	0.2	38
46	214 Expression of hPepT1 Aggravates Intestinal Inflammation. Gastroenterology, 2009, 136, A-40.	0.6	1
47	Pathogenic Bacteria Induce Colonic PepT1 Expression: An Implication in Host Defense Response. Gastroenterology, 2009, 137, 1435-1447.e2.	0.6	30
48	Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function. PLoS ONE, 2009, 4, e5049.	1.1	24
49	You See UC: An Animal Model of Ulcerative Colitis. Gastroenterology, 2008, 135, 2149-2150.	0.6	Ο
50	PepT1-Mediated Tripeptide KPV Uptake Reduces Intestinal Inflammation. Gastroenterology, 2008, 134, 166-178.	0.6	101
51	Nuclear Factor-l [®] B Is a Critical Mediator of Ste20-Like Proline-/Alanine-Rich Kinase Regulation in Intestinal Inflammation. American Journal of Pathology, 2008, 173, 1013-1028.	1.9	37
52	Butyrate Transcriptionally Enhances Peptide Transporter PepT1 Expression and Activity. PLoS ONE, 2008, 3, e2476.	1.1	79
53	Ecto-Phosphorylation of CD98 Regulates Cell-Cell Interactions. PLoS ONE, 2008, 3, e3895.	1.1	16
54	Generation and characterization of hPepT1 transgenic mice. FASEB Journal, 2008, 22, 1183.6.	0.2	1

4

#	Article	IF	CITATIONS
55	ADAM-15/Metargidin Mediates Homotypic Aggregation of Human T Lymphocytes and Heterotypic Interactions of T Lymphocytes with Intestinal Epithelial Cells. Journal of Biological Chemistry, 2007, 282, 16948-16958.	1.6	27
56	Association of PepT1 with lipid rafts differently modulates its transport activity in polarized and nonpolarized cells. American Journal of Physiology - Renal Physiology, 2007, 293, G1155-G1165.	1.6	17
57	Characterization of the human intestinal CD98 promoter and its regulation by interferon-γ. American Journal of Physiology - Renal Physiology, 2007, 292, G535-G545.	1.6	28
58	Leptin Transcriptionally Enhances Peptide Transporter (hPepT1) Expression and Activity via the cAMP-response Element-binding Protein and Cdx2 Transcription Factors. Journal of Biological Chemistry, 2007, 282, 1359-1373.	1.6	38
59	PepT1â€mediated antiâ€inflammatory triâ€peptide (KPV) transport reduces intestinal inflammation. FASEB Journal, 2007, 21, A586.	0.2	0
60	Saccharomyces boulardii Inhibits Inflammatory Bowel Disease by Trapping T Cells in Mesenteric Lymph Nodes. Gastroenterology, 2006, 131, 1812-1825.	0.6	138
61	Saccharomyces boulardii prevents TNF-α-induced apoptosis in EHEC-infected T84 cells. Research in Microbiology, 2006, 157, 456-465.	1.0	50
62	Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Research in Microbiology, 2005, 156, 256-262.	1.0	118
63	Saccharomyces boulardii Interferes with Enterohemorrhagic Escherichia coli -Induced Signaling Pathways in T84 Cells. Infection and Immunity, 2003, 71, 766-773.	1.0	148