
## Sefiya A Olarinoye-Akorede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4039682/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Determining the optical properties and simulating the radiation shielding parameters of Dy3+ doped lithium yttrium borate glasses. Optik, 2022, 250, 168318.                                                                                          | 1.4              | 31        |
| 2  | The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceramics International, 2021, 47, 2547-2556.                                                                     | 2.3              | 44        |
| 3  | Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceramics International, 2021, 47, 5951-5958.                                                                                                | 2.3              | 63        |
| 4  | Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nuclear<br>Engineering and Technology, 2021, 53, 282-293.                                                                                                 | 1.1              | 62        |
| 5  | Photon and neutron absorbing capacity of titanate-reinforced borate glasses:<br>B2O3–Li2O–Al2O3–TiO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 7377-7390.                                                                    | 1.1              | 3         |
| 6  | Responsibility of Bi2O3 Content in Photon, Alpha, Proton, Fast and Thermal Neutron Shielding<br>Capacity and Elastic Moduli of ZnO/B2O3/Bi2O3 Glasses. Journal of Inorganic and Organometallic<br>Polymers and Materials, 2021, 31, 3505-3524.        | 1.9              | 53        |
| 7  | Bi2O3 reinforced B2O3 + Sb2O3 + Li2O: composition, physical, linear optical characteristics, ar attenuation capacity. Journal of Materials Science: Materials in Electronics, 2021, 32, 12439-12452.                                                  | ıd photon<br>1.1 | 8         |
| 8  | Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses.<br>Optical Materials, 2021, 114, 110897.                                                                                                          | 1.7              | 27        |
| 9  | A comprehensive investigation on the role of PbO in the structural and radiation shielding attribute<br>of P2O5–CaO–Na2O–K2O–PbO glass system. Journal of Materials Science: Materials in Electronics,<br>2021, 32, 12371-12382.                      | 1.1              | 14        |
| 10 | SrO-reinforced potassium sodium borophosphate bioactive glasses: Compositional, physical, spectral,<br>structural properties and photon attenuation competence. Journal of Non-Crystalline Solids, 2021,<br>559, 120667.                              | 1.5              | 21        |
| 11 | Ge20Se80-xBix (x â‰≇€‰12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. Journal of Materials Science: Materials in Electronics, 2021, 32, 15509-15522.                         | 1.1              | 28        |
| 12 | Assessment of gamma-radiation attenuation characteristics of Bi2O3–B2O3–SiO2–Na2O glasses using<br>Geant4 simulation code. European Physical Journal Plus, 2021, 136, 1.                                                                              | 1.2              | 42        |
| 13 | Ultrasonic waves, mechanical properties and radiation shielding competence of Er3+ doped lead borate glasses: experimental and theoretical investigations. Journal of the Australian Ceramic Society, 2021, 57, 1163-1176.                            | 1.1              | 5         |
| 14 | Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate<br>glasses: a new nonâ€ŧoxic candidate for shielding applications. Journal of Materials Science: Materials<br>in Electronics, 2021, 32, 15080-15094. | 1.1              | 11        |
| 15 | Effects of TeO2 and B2O3 on photon, neutron, and charged particle transmission properties of Bi2O3-BaO-LiF glass system. Journal of the Australian Ceramic Society, 2021, 57, 1177-1188.                                                              | 1.1              | 22        |
| 16 | Mechanical and Gamma Ray Absorption Behavior of PbO-WO3-Na2O-MgO-B2O3 Glasses in the Low<br>Energy Range. Materials, 2021, 14, 3466.                                                                                                                  | 1.3              | 16        |
| 17 | Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses:<br>An experimental and in silico study. Optical Materials, 2021, 117, 111173.                                                                  | 1.7              | 39        |
| 18 | Dense and environment friendly bismuth barium telluroborate glasses for nuclear protection applications. Progress in Nuclear Energy, 2021, 137, 103763.                                                                                               | 1.3              | 79        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Physical, structural, mechanical, and radiation shielding properties of the PbO–B2O3–Bi2O3–ZnO<br>glass system. Journal of Materials Science: Materials in Electronics, 2021, 32, 18994-19009.                           | 1.1 | 23        |
| 20 | Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 20867-20881.       | 1.1 | 31        |
| 21 | Shielding Properties of Some Marble Types: A Comprehensive Study of Experimental and XCOM Results.<br>Materials, 2021, 14, 4194.                                                                                         | 1.3 | 28        |
| 22 | Enhancement of shielding ability using PbF2 in Fe-reinforced bismuth borate glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 23047-23065.                                                      | 1.1 | 21        |
| 23 | Investigation of mechanical, photon buildup factors, and neutron-sensing properties of<br>B2O3–Al2O3–Li2O–CuO glasses. Journal of Materials Science: Materials in Electronics, 2021, 32,<br>24401-24414.                 | 1.1 | 9         |
| 24 | Mechanical and photon shielding aspects of PbO–BaO–WO3–Na2O–B2O3 glass systems. Applied<br>Physics A: Materials Science and Processing, 2021, 127, 1.                                                                    | 1.1 | 10        |
| 25 | Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: A role of SnO2 addition. Optik, 2021, 248, 168047.                                                                                  | 1.4 | 35        |
| 26 | Effects of TeO2/B2O3 substitution on synthesis, physical, optical and radiation shielding properties of ZnO–Li2O-GeO2-Bi2O3 glasses. Ceramics International, 2021, 47, 30137-30146.                                      | 2.3 | 29        |
| 27 | Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. Journal of Alloys and Compounds, 2021, 882, 160625.                                      | 2.8 | 76        |
| 28 | Nuclear shielding properties and buildup factors of Cr-based ferroalloys. Progress in Nuclear Energy, 2021, 141, 103956.                                                                                                 | 1.3 | 42        |
| 29 | Physical, optical, and ionizing radiation shielding parameters of Al(PO3)3-doped PbO–Bi2O3–B2O3 glass system. Journal of Materials Science: Materials in Electronics, 2021, 32, 27744-27761.                             | 1.1 | 16        |
| 30 | Fabrication, linear/nonlinear optical properties, Judd–Ofelt parameters and gamma-ray attenuation<br>capacity of Er2O3 doped P2O5–ZnO–CdO glasses. Journal of Materials Research and Technology, 2021,<br>15, 5540-5553. | 2.6 | 11        |
| 31 | Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate<br>(TeO2–V2O5–Bi2O3) semiconductor glasses. Ceramics International, 2020, 46, 25440-25452.                                  | 2.3 | 60        |
| 32 | The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi<br>heavy elements for nuclear protection applications. Ceramics International, 2020, 46, 27163-27174.                | 2.3 | 31        |
| 33 | Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceramics International, 2020, 46, 27616-27626.                      | 2.3 | 35        |
| 34 | The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses using Monte Carlo simulation. Ceramics International, 2020, 46, 29191-29198.                                        | 2.3 | 75        |
| 35 | Comparative analysis of NORM concentration in mineral soils and tailings from a tin-mine in Nigeria.<br>Environmental Earth Sciences, 2020, 79, 1.                                                                       | 1.3 | 14        |
| 36 | Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of<br>TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International, 2020, 46, 23134-23144.                                      | 2.3 | 107       |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | High Terrestrial Radiation Level in an Active Tin-Mine at Jos South, Nigeria. Journal of Applied Sciences<br>and Environmental Management, 2020, 24, 435-442.                                                                                                      | 0.1 | 5         |
| 38 | EXABCal: A program for calculating photon exposure and energy absorption buildup factors. Heliyon, 2019, 5, e02017.                                                                                                                                                | 1.4 | 84        |
| 39 | Breast Imaging Reporting and Data Systems category 3 (probably benign) breast lesions detected on<br>diagnostic breast ultrasound: The prevalence, outcome and malignancy detection rate in Zaria,<br>Nigeria. South African Journal of Radiology, 2018, 22, 1315. | 0.1 | 3         |
| 40 | Optical and microstructural properties of neutron irradiated RF- sputtered amorphous alumina thin films. Optik, 2017, 134, 66-77.                                                                                                                                  | 1.4 | 34        |
| 41 | Crystal structure refinement of co-doped Ba 0.88 Ca 0.12 Ti 0.975 Sn 0.025 O 3 ceramic. Materials Chemistry and Physics, 2017, 196, 256-261.                                                                                                                       | 2.0 | 8         |
| 42 | He+ induced changes in the surface structure and optical properties of RF-sputtered amorphous alumina thin films. Journal of Non-Crystalline Solids, 2016, 432, 292-299.                                                                                           | 1.5 | 32        |
| 43 | Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing.<br>International Journal of Materials Research, 2015, 106, 514-520.                                                                                                 | 0.1 | 2         |
| 44 | Comparative assessment of natural radionuclide content of cement brands used within Nigeria and some countries in the world. Journal of Geochemical Exploration, 2014, 142, 21-28.                                                                                 | 1.5 | 25        |
| 45 | Estimation of patients' organ doses and conceptus doses from selected X-ray examinations in two<br>Nigeria X-ray centres. Radiation Protection Dosimetry, 2009, 132, 395-402.                                                                                      | 0.4 | 17        |