Jeremy W Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4039197/publications.pdf Version: 2024-02-01

IFREMY W FOX

#	Article	IF	CITATIONS
1	Decline effects are rare in ecology. Ecology, 2022, 103, e3680.	3.2	11
2	An experimental test of the effects of dispersal and the paradox of enrichment on metapopulation persistence. Oikos, 2020, 129, 49-58.	2.7	9
3	Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Global Ecology and Biogeography, 2020, 29, 1531-1541.	5.8	32
4	A Dataâ€Based Guide to the North American Ecology Faculty Job Market. Bulletin of the Ecological Society of America, 2020, 101, e01624.	0.2	4
5	Experimental evolution of competing bean beetle species reveals longâ€ŧerm reversals of shortâ€ŧerm evolution, but no consistent character displacement. Ecology and Evolution, 2020, 10, 3727-3737.	1.9	1
6	Persistently rare species experience stronger negative frequency dependence than common species: A statistical attractor that is hard to avoid. Global Ecology and Biogeography, 2019, 28, 508-520.	5.8	8
7	Occasional long distance dispersal increases spatial synchrony of population cycles. Journal of Animal Ecology, 2019, 88, 154-163.	2.8	14
8	Effects of intraspecific phenotypic variation on species coexistence. Ecology, 2018, 99, 1453-1462.	3.2	41
9	The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology, 2017, 98, 1807-1816.	3.2	30
10	Moving forward in circles: challenges and opportunities in modelling population cycles. Ecology Letters, 2017, 20, 1074-1092.	6.4	100
11	Coevolution of competing <i>Callosobruchus</i> species does not stabilize coexistence. Ecology and Evolution, 2017, 7, 6540-6548.	1.9	12
12	Population extinctions can increase metapopulation persistence. Nature Ecology and Evolution, 2017, 1, 1271-1278.	7.8	50
13	Abundance of common species, not species richness, drives delivery of a realâ€world ecosystem service. Ecology Letters, 2015, 18, 626-635.	6.4	468
14	Using a "time machine―to test for local adaptation of aquatic microbes to temporal and spatial environmental variation. Evolution; International Journal of Organic Evolution, 2015, 69, 136-145.	2.3	13
15	Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140633.	2.6	50
16	The dynamics of community assembly under sudden mixing in experimental microcosms. Ecology, 2013, 94, 2898-2906.	3.2	27
17	The intermediate disturbance hypothesis should be abandoned. Trends in Ecology and Evolution, 2013, 28, 86-92.	8.7	362
18	The intermediate disturbance hypothesis is broadly defined, substantive issues are key: a reply to Sheil and Burslem. Trends in Ecology and Evolution, 2013, 28, 572-573.	8.7	19

Jeremy W Fox

#	Article	IF	CITATIONS
19	Nonlinear Effect of Dispersal Rate on Spatial Synchrony of Predator-Prey Cycles. PLoS ONE, 2013, 8, e79527.	2.5	15
20	Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos, 2012, 121, 290-298.	2.7	49
21	Phase locking, the Moran effect and distance decay of synchrony: experimental tests in a model system. Ecology Letters, 2011, 14, 163-168.	6.4	47
22	Adaptive Dynamics of Competition for Nutritionally Complementary Resources: Character Convergence, Displacement, and Parallelism. American Naturalist, 2011, 178, 501-514.	2.1	22
23	Partitioning the effects of species loss on community variability using multi-level selection theory. Oikos, 2010, 119, 1823-1833.	2.7	9
24	Coexistence mechanisms and the paradox of the plankton: quantifying selection from noisy data. Ecology, 2010, 91, 1774-1786.	3.2	29
25	Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature, 2009, 460, 1007-1010.	27.8	121
26	Partitioning the mechanisms by which genetic diversity of parasite infections affects total parasite load. Oikos, 2009, 118, 1507-1514.	2.7	3
27	REVEALING HOW SPECIES LOSS AFFECTS ECOSYSTEM FUNCTION: THE TRAIT-BASED PRICE EQUATION PARTITION. Ecology, 2008, 89, 269-279.	3.2	62
28	Character Convergence under Competition for Nutritionally Essential Resources. American Naturalist, 2008, 172, 667-680.	2.1	83
29	Testing the Mechanisms by Which Sourceâ€Sink Dynamics Alter Competitive Outcomes in a Model System. American Naturalist, 2007, 170, 396-408.	2.1	16
30	The dynamics of topâ€down and bottomâ€up effects in food webs of varying prey diversity, composition, and productivity. Oikos, 2007, 116, 189-200.	2.7	34
31	USING THE PRICE EQUATION TO PARTITION THE EFFECTS OF BIODIVERSITY LOSS ON ECOSYSTEM FUNCTION. Ecology, 2006, 87, 2687-2696.	3.2	103
32	Predicting local-regional richness relationships using island biogeography models. Oikos, 2006, 113, 376-382.	2.7	23
33	Interpreting the â€Â~selection effect' of biodiversity on ecosystem function. Ecology Letters, 2005, 8, 846-856.	6.4	243
34	EFFECTS OF ALGAL AND HERBIVORE DIVERSITY ON THE PARTITIONING OF BIOMASS WITHIN AND AMONG TROPHIC LEVELS. Ecology, 2004, 85, 549-559.	3.2	89
35	Modelling the joint effects of predator and prey diversity on total prey biomass. Journal of Animal Ecology, 2004, 73, 88-96.	2.8	50
36	Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 2004, 73, 585-598.	2.8	557

Jeremy W Fox

#	Article	IF	CITATIONS
37	The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity. Oikos, 2003, 102, 630-640.	2.7	28
38	Testing a Simple Rule for Dominance in Resource Competition. American Naturalist, 2002, 159, 305-319.	2.1	52
39	Stability and complexity in microcosm communities. Journal of Animal Ecology, 2002, 71, 749-756.	2.8	39