
Marie-Emilie Terret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/403893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYO10 promotes transzonal projection (TZP)-dependent germ line-somatic contact during mammalian folliculogenesis. Biology of Reproduction, 2022, , .	2.7	7
2	Myosin-X is dispensable for spindle morphogenesis and positioning in the mouse oocyte. Development (Cambridge), 2021, 148, .	2.5	7
3	Artificially decreasing cortical tension generates aneuploidy in mouse oocytes. Nature Communications, 2020, 11, 1649.	12.8	26
4	Active diffusion in oocytes nonspecifically centers large objects during prophase I and meiosis I. Journal of Cell Biology, 2020, 219, .	5.2	33
5	Nuclear positioning as an integrator of cell fate. Current Opinion in Cell Biology, 2019, 56, 122-129.	5.4	20
6	A computational model of the early stages of acentriolar meiotic spindle assembly. Molecular Biology of the Cell, 2019, 30, 863-875.	2.1	22
7	Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Reports, 2018, 19, 368-381.	4.5	30
8	Control of nucleus positioning in mouse oocytes. Seminars in Cell and Developmental Biology, 2018, 82, 34-40.	5.0	23
9	Chromosome structural anomalies due to aberrant spindle forces exerted at gene editing sites in meiosis. Journal of Cell Biology, 2018, 217, 3416-3430.	5.2	8
10	Asymmetries and Symmetries in the Mouse Oocyte and Zygote. Results and Problems in Cell Differentiation, 2017, 61, 285-299.	0.7	22
11	Oocyte Maturation and Development. F1000Research, 2016, 5, 309.	1.6	29
12	Meiotic spindle assembly and chromosome segregation in oocytes. Journal of Cell Biology, 2016, 215, 611-619.	5.2	160
13	F-actin mechanics control spindle centring in the mouse zygote. Nature Communications, 2016, 7, 10253.	12.8	75
14	A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nature Communications, 2015, 6, 6027.	12.8	66
15	Actin-based spindle positioning: new insights from female gametes. Journal of Cell Science, 2014, 127, 477-83.	2.0	76
16	A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nature Cell Biology, 2013, 15, 958-966.	10.3	145
17	Mouse oocyte, a paradigm of cancer cell. Cell Cycle, 2013, 12, 3370-3376.	2.6	7
18	Spindle positioning in mammalian oocytes. Experimental Cell Research, 2012, 318, 1442-1447.	2.6	34

MARIE-EMILIE TERRET

#	Article	IF	CITATIONS
19	Control of the oocyte-to-embryo transition by the ubiquitin–proteolytic system in mouse and C. elegans. Current Opinion in Cell Biology, 2010, 22, 758-763.	5.4	28
20	Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. Journal of Cell Biology, 2010, 190, 89-100.	5.2	164
21	The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes and Development, 2009, 23, 2415-2425.	5.9	183
22	Cohesin acetylation speeds the replication fork. Nature, 2009, 462, 231-234.	27.8	198
23	Functional Dissection of Mitotic Regulators Through Gene Targeting in Human Somatic Cells. Methods in Molecular Biology, 2009, 545, 21-37.	0.9	34
24	A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. Journal of Cell Biology, 2007, 176, 295-305.	5.2	219
25	Requirements for Cdk7 in the Assembly of Cdk1/Cyclin B and Activation of Cdk2 Revealed by Chemical Genetics in Human Cells. Molecular Cell, 2007, 25, 839-850.	9.7	221
26	Meiosis: separase strikes twice. Nature Cell Biology, 2006, 8, 910-911.	10.3	4
27	The regulation of competence to replicate in meiosis by Cdc6 is conserved during evolution. Molecular Reproduction and Development, 2004, 69, 94-100.	2.0	14
28	The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity. Current Biology, 2003, 13, 1797-1802.	3.9	135
29	DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development (Cambridge), 2003, 130, 5169-5177.	2.5	77
30	Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. Journal of Cell Biology, 2002, 157, 603-613.	5.2	94
31	Meiotic Maturation of the Mouse Oocyte Requires an Equilibrium between Cyclin B Synthesis and Degradation. Developmental Biology, 2001, 232, 400-413.	2.0	167
32	RINGO efficiently triggers meiosis resumption in mouse oocytes and induces cell cycle arrest in embryos. Biology of the Cell, 2001, 93, 89-97.	2.0	16
33	An interpretable and versatile machine learning approach for oocyte phenotyping. Journal of Cell Science, 0, , .	2.0	10