Xuejin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038839/publications.pdf

Version: 2024-02-01

73 3,975 32 61 papers citations h-index g-index

74 74 74 5227

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202114681.	13.8	37
2	Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	7
3	Graphene supported single metal atom catalysts for the efficient hydrogen oxidation reaction in alkaline media. Catalysis Science and Technology, 2022, 12, 530-541.	4.1	11
4	Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2022, 10, 4739-4748.	10.3	11
5	Novel Electrode Materials and Redoxâ€Active Electrolyte for Highâ€Performance Supercapacitor. ChemElectroChem, 2022, 9, .	3.4	3
6	Realizing an aqueous sodium-ion battery with a super-high discharge voltage based on a novel FeSe ₂ @rGO anode. Inorganic Chemistry Frontiers, 2022, 9, 1622-1629.	6.0	11
7	Multivalent cationic and anionic mixed redox of an Sb ₂ S ₃ cathode toward high-capacity aluminum ion batteries. Journal of Materials Chemistry A, 2022, 10, 10829-10836.	10.3	10
8	Dual carbon Li-ion capacitor with high energy density and ultralong cycling life at a wide voltage window. Science China Materials, 2022, 65, 2373-2384.	6.3	5
9	Ultrafast and Long-Cycle Stable Aluminum Polyphenylene Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30927-30936.	8.0	9
10	High-performance aluminum-polyaniline battery based on the interaction between aluminum ion and -NH groups. Science China Materials, 2021, 64, 318-328.	6.3	31
11	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie, 2021, 133, 5503-5512.	2.0	13
12	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie - International Edition, 2021, 60, 5443-5452.	13.8	37
13	Initiating a Roomâ€Temperature Rechargeable Aqueous Fluorideâ€Ion Battery with Long Lifespan through a Rational Buffering Phase Design. Advanced Energy Materials, 2021, 11, 2003714.	19.5	28
14	Watermelon Peelâ€Derived Heteroatomâ€Doped Hierarchical Porous Carbon as a Highâ€Performance Electrode Material for Supercapacitors. ChemElectroChem, 2021, 8, 1196-1203.	3.4	28
15	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4â^' to Al3+ and an electrochromic Al ion battery. Energy Storage Materials, 2021, 39, 412-418.	18.0	52
16	Waterâ€Soluble Salt Templateâ€Assisted Anchor of Hollow FeS ₂ Nanoparticle Inside 3D Carbon Skeleton to Achieve Fast Potassiumâ€Ion Storage. Advanced Energy Materials, 2021, 11, 2101343.	19.5	56
17	A rechargeable 6-electron Al–Se battery with high energy density. Energy Storage Materials, 2021, 41, 667-676.	18.0	44
18	Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube. Electrochimica Acta, 2021, 395, 139212.	5.2	8

#	Article	IF	Citations
19	Enhancing hydrogen oxidation electrocatalysis of nickel-based catalyst by simultaneous chemical anchoring and electronic structure regulation. Chemical Engineering Journal, 2021, 425, 130654.	12.7	15
20	Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: Insights from DFT calculations. Chemical Engineering Journal, 2020, 387, 123403.	12.7	21
21	Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries. Chemical Communications, 2020, 56, 1593-1596.	4.1	24
22	High performance aluminum ion battery using polyaniline/ordered mesoporous carbon composite. Journal of Power Sources, 2020, 477, 228702.	7.8	33
23	\hat{l}^2 -Hydrogen of Polythiophene Induced Aluminum Ion Storage for High-Performance Al-Polythiophene Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46065-46072.	8.0	31
24	Mechanistic Insights into the Hydrogen Oxidation Reaction on PtNi Alloys in Alkaline Media: A First-Principles Investigation. ACS Applied Materials & Interfaces, 2020, 12, 40248-40260.	8.0	33
25	Stabilized Co ³⁺ /Co ⁴⁺ Redox Pair in In Situ Produced CoSe _{2â^³} <i>_x< i>â€Verived Cobalt Oxides for Alkaline Zn Batteries with 10 000 ycle Lifespan and 1.9â€V Voltage Plateau. Advanced Energy Materials, 2020, 10, 2000892.</i>	19.5	114
26	Integration designs toward newâ€generation wearable energy supplyâ€sensor systems for realâ€time health monitoring: A minireview. InformaÁnÃ-Materiály, 2020, 2, 1109-1130.	17.3	35
27	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel–Cobalt Carbonate Hydroxide Cathode. Small, 2020, 16, e2001935.	10.0	54
28	Binary FeCo-N-doped carbon/carbon nanotube composites for efficient oxygen reduction and high-performance aluminum-air battery. Journal of Power Sources, 2020, 456, 227933.	7.8	14
29	Electrochemical heavy metal removal from water using PVC waste-derived N, S co-doped carbon materials. RSC Advances, 2020, 10, 4064-4070.	3.6	17
30	Hierarchical cobalt oxide@Nickel-vanadium layer double hydroxide core/shell nanowire arrays with enhanced areal specific capacity for nickel–zinc batteries. Journal of Power Sources, 2019, 436, 226867.	7.8	48
31	Co-MOF-74 derived Co3O4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sensors and Actuators B: Chemical, 2019, 300, 127011.	7.8	62
32	Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale, 2019, 11, 17992-18008.	5.6	83
33	Superior catalytic performance of micro-mesoporous Beta-SBA-15 composite with a high indexed isomerization factor in hydroisomerization of n-heptane. Fuel, 2019, 252, 653-665.	6.4	28
34	Predicting Catalytic Performance of Micro-Mesoporous Pt/Beta-KIT-6 Catalyst in <i>n</i> -Heptane Hydroisomerization Using Indexed Isomerization Factor and Experimental Verification. Industrial & Engineering Chemistry Research, 2019, 58, 5146-5157.	3.7	9
35	A hierarchical structured steel mesh decorated with metal organic framework/graphene oxide for high-efficient oil/water separation. Journal of Hazardous Materials, 2019, 373, 725-732.	12.4	120
36	Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance. Journal of Alloys and Compounds, 2019, 787, 27-35.	5 . 5	21

#	Article	IF	CITATIONS
37	Surfactant assisted electrospinning of WS2 nanofibers and its promising performance as anode material of sodium-ion batteries. Electrochimica Acta, 2019, 302, 259-269.	5.2	30
38	A durable mesh decorated with polydopamine/graphene oxide for highly efficient oil/water mixture separation. Applied Surface Science, 2019, 479, 351-359.	6.1	51
39	High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Applied Surface Science, 2019, 476, 61-69.	6.1	103
40	Beta-MCM-41 micro-mesoporous catalysts in the hydroisomerization of n-heptane: Definition of an indexed isomerization factor as a performance descriptor. Microporous and Mesoporous Materials, 2019, 277, 17-28.	4.4	31
41	Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chemical Engineering Journal, 2018, 338, 92-98.	12.7	111
42	S-graphite slit pore: A superior selective adsorbent for light hydrocarbons. Applied Surface Science, 2018, 444, 772-779.	6.1	18
43	Outstanding capacitive performance of ordered mesoporous carbon modified by anthraquinone. Electrochimica Acta, 2018, 259, 110-121.	5.2	37
44	Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery. Journal of Power Sources, 2018, 401, 6-12.	7.8	94
45	Me–N–C (Me = Fe, Cu, and Co) nanosheet as a promising charge-controlled CO2 capture material. Journal of Materials Chemistry A, 2018, 6, 12404-12410.	10.3	27
46	Ultrastable bimetallic catalyst with tuned surface electronic properties for highly selective oxidation of cyclohexane. Applied Surface Science, 2018, 457, 580-590.	6.1	24
47	Stable CoSe ₂ /carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy and Environmental Science, 2018, 11, 2341-2347.	30.8	240
48	Superior Selective CO ₂ Adsorption of C ₃ N Pores: GCMC and DFT Simulations. ACS Applied Materials & DFT Simulations. ACS Applied Materials & DFT Simulations.	8.0	79
49	Insight of synergistic effect of different active metal ions in layered double hydroxides on their electrochemical behaviors. Electrochimica Acta, 2017, 253, 302-310.	5.2	67
50	Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance. ACS Applied Materials & Interfaces, 2017, 9, 31699-31709.	8.0	103
51	Bifuntional petaloid nickel manganese layered double hydroxides decorated on a freestanding carbon foam for flexible asymmetric supercapacitor and oxygen evolution. Electrochimica Acta, 2017, 252, 275-285.	5.2	30
52	Sulfur–Nitrogen Codoped Graphite Slit-Pore for Enhancing Selective Carbon Dioxide Adsorption: Insights from Molecular Simulations. ACS Sustainable Chemistry and Engineering, 2017, 5, 8815-8823.	6.7	23
53	Layered double hydroxides toward high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15460-15485.	10.3	326
54	Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance. Nanoscale Research Letters, 2016, 11, 163.	5.7	31

#	Article	IF	CITATIONS
55	A New Approach to Tuning Carbon Ultramicropore Size at Subâ€Angstrom Level for Maximizing Specific Capacitance and CO ₂ Uptake. Advanced Functional Materials, 2016, 26, 7955-7964.	14.9	128
56	Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. Journal of Power Sources, 2016, 331, 67-75.	7.8	62
57	Modification of USY zeolites with malic–nitric acid for hydrocracking. Applied Petrochemical Research, 2016, 6, 353-359.	1.3	5
58	Outstanding capacitive performance of reticular porous carbon/graphene sheets with superhigh surface area. Electrochimica Acta, 2016, 190, 923-931.	5.2	32
59	Hyper-Branched Cu@Cu ₂ O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection ACS Applied Materials & Detection	8.0	99
60	Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Research, 2015, 8, 2763-2776.	10.4	68
61	Preparation and hydrodesulfurization properties of cobalt–molybdenum–phosphorous catalysts for removal of dibenzothiophene. Applied Petrochemical Research, 2015, 5, 405-411.	1.3	8
62	The effects of magnesium of Zn–Mg–Al additives on catalytic cracking of VGO and in situ reduction of sulfur in gasoline. Applied Petrochemical Research, 2014, 4, 329-336.	1.3	5
63	Combined modification of ultra-stable Y zeolites via citric acid and phosphoric acid. Applied Petrochemical Research, 2014, 4, 343-349.	1.3	10
64	Excellent Capacitive Performance of a Threeâ€Dimensional Hierarchical Porous Graphene/Carbon Composite with a Superhigh Surface Area. Chemistry - A European Journal, 2014, 20, 13314-13320.	3.3	56
65	Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochimica Acta, 2014, 133, 459-466.	5.2	162
66	An efficient modification of ultra-stable Y zeolites using citric acid and ammonium fluosilicate. Applied Petrochemical Research, 2014, 4, 373-378.	1.3	13
67	Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Applied Surface Science, 2014, 308, 306-310.	6.1	151
68	N-containing activated carbons for CO ₂ capture. International Journal of Smart and Nano Materials, 2013, 4, 55-61.	4.2	24
69	Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy and Environmental Science, 2012, 5, 7323.	30.8	434
70	Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons. RSC Advances, 2012, 2, 161-167.	3.6	98
71	Natural gas storage on activated carbon modified by metal oxides. Journal of Porous Materials, 2009, 16, 27-32.	2.6	11
72	Preparation of polyanilineâ€coated mesoporous carbon and its enhanced electrochemical properties. Polymers for Advanced Technologies, 2009, 20, 1179-1182.	3.2	10

XUEJIN LI

#	Article	IF	CITATIONS
73	Enhanced electrochemical properties of polyaniline-coated multiwall carbon nanotubes. Journal of Porous Materials, 2008, 15, 647-651.	2.6	7