Gillian S Butler-Browne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038583/publications.pdf Version: 2024-02-01

CILLIAN S RUTLED-ROOMNE

#	Article	IF	CITATIONS
1	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	13.5	791
2	Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature, 1981, 292, 805-809.	13.7	581
3	Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle. Journal of Cell Biology, 1997, 139, 129-144.	2.3	318
4	Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. Journal of Clinical Investigation, 2004, 114, 182-195.	3.9	315
5	Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. Journal of Molecular Biology, 1978, 126, 415-431.	2.0	314
6	Regenerative potential of human skeletal muscle during aging. Aging Cell, 2002, 1, 132-139.	3.0	288
7	Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Developmental Biology, 1984, 102, 324-334.	0.9	284
8	Human Muscle Satellite Cells as Targets of Chikungunya Virus Infection. PLoS ONE, 2007, 2, e527.	1.1	245
9	Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell, 2007, 6, 515-523.	3.0	239
10	Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle, 2011, 1, 34.	1.9	228
11	Myosin heavy chain isoforms in postnatal muscle development of mice. Biology of the Cell, 2003, 95, 399-406.	0.7	220
12	Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Developmental Biology, 1990, 141, 24-40.	0.9	211
13	JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain, 2018, 141, 1609-1621.	3.7	169
14	Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochemistry and Cell Biology, 1999, 111, 189-195.	0.8	158
15	Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes, 2015, 64, 3121-3134.	0.3	146
16	β-hydroxy-β-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 755-763.	1.9	144
17	Necrosis in anti-SRP ⁺ and anti-HMGCR ⁺ myopathies. Neurology, 2018, 90, e507-e517.	1.5	132
18	Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain. Nature, 1982, 299, 830-833.	13.7	131

#	Article	IF	CITATIONS
19	Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Letters, 1990, 270, 57-61.	1.3	131
20	In Vivo Myogenic Potential of Human CD133+ Muscle-derived Stem Cells: A Quantitative Study. Molecular Therapy, 2009, 17, 1771-1778.	3.7	131
21	In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. Journal of Proteomics, 2012, 77, 344-356.	1.2	125
22	Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation. Molecular Therapy, 2012, 20, 2168-2179.	3.7	120
23	Replicative aging downâ€regulates the myogenic regulatory factors in human myoblasts. Biology of the Cell, 2008, 100, 189-199.	0.7	116
24	Autologous Myoblast Transplantation for Oculopharyngeal Muscular Dystrophy: a Phase I/Iia Clinical Study. Molecular Therapy, 2014, 22, 219-225.	3.7	116
25	Inhibition of Chikungunya Virus Infection in Cultured Human Muscle Cells by Furin Inhibitors. Journal of Biological Chemistry, 2008, 283, 21899-21908.	1.6	114
26	Pathogenic role of anti–signal recognition protein and anti–3â€Hydroxyâ€3â€methylglutarylâ€ <scp>C</scp> o <scp>A</scp> reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Annals of Neurology, 2017, 81, 538-548.	2.8	112
27	Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Letters, 1984, 166, 71-75.	1.3	108
28	Assessment of maximal handgrip strength: how many attempts are needed?. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 466-474.	2.9	103
29	Human myostatin negatively regulates human myoblast growth and differentiation. American Journal of Physiology - Cell Physiology, 2011, 301, C195-C203.	2.1	96
30	Human desmin-coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development. Gene, 1989, 78, 243-254.	1.0	95
31	Age-Associated Methylation Suppresses SPRY1 , Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Reports, 2015, 13, 1172-1182.	2.9	95
32	Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. American Journal of Physiology - Cell Physiology, 2011, 301, C1316-C1324.	2.1	94
33	Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology, 2013, 14, 273-292.	2.0	92
34	Physical Studies of Chromatin. The Recombination of Histones with DNA. FEBS Journal, 1976, 62, 21-31.	0.2	90
35	Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Experimental Gerontology, 2002, 37, 1229-1236.	1.2	88
36	NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age. Age, 2015, 37, 9798.	3.0	86

#	Article	IF	CITATIONS
37	Large CTG Repeats Trigger p16-Dependent Premature Senescence in Myotonic Dystrophy Type 1 Muscle Precursor Cells. American Journal of Pathology, 2009, 174, 1435-1442.	1.9	85
38	Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. Journal of the American Medical Directors Association, 2018, 19, 703-709.	1.2	82
39	Pathological mechanisms implicated in localized female trapezius myalgia. Pain, 1998, 78, 191-196.	2.0	81
40	Defective mRNA in myotonic dystrophy accumulates at the periphery of nuclear splicing speckles. Genes To Cells, 2007, 12, 1035-1048.	0.5	80
41	Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Human Mutation, 2010, 31, 136-142.	1.1	80
42	Analysis of skeletal and cardiac muscle from desmin knockâ€out and normal mice by high resolution separation of myosin heavyâ€chain isoforms. Biology of the Cell, 1996, 88, 131-135.	0.7	79
43	Athletes with Exercise-Associated Fatigue Have Abnormally Short Muscle DNA Telomeres. Medicine and Science in Sports and Exercise, 2003, 35, 1524-1528.	0.2	78
44	Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Human Molecular Genetics, 2010, 19, 2191-2207.	1.4	78
45	Mechano Growth Factor E peptide (MGF-E), derived from an isoform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mechanisms of Ageing and Development, 2011, 132, 154-162.	2.2	76
46	Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology, 2013, 14, 261-272.	2.0	75
47	Role of Regulatory T Cells in a New Mouse Model of Experimental Autoimmune Myositis. American Journal of Pathology, 2009, 174, 989-998.	1.9	74
48	The Impact of Different Diagnostic Criteria on the Prevalence of Sarcopenia in Healthy Elderly Participants and Geriatric Outpatients. Gerontology, 2015, 61, 491-496.	1.4	71
49	Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 647-659.	2.9	71
50	Premature Aging in Skeletal Muscle Lacking Serum Response Factor. PLoS ONE, 2008, 3, e3910.	1.1	70
51	Skeletal muscle telomere length in healthy, experienced, endurance runners. European Journal of Applied Physiology, 2010, 109, 323-330.	1.2	70
52	Inflammation-Induced Acute Phase Response in Skeletal Muscle and Critical Illness Myopathy. PLoS ONE, 2014, 9, e92048.	1.1	70
53	Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation. Neuromuscular Disorders, 2006, 16, 770-781.	0.3	66
54	IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. Journal of Cell Science, 2007, 120, 670-681.	1.2	66

#	Article	IF	CITATIONS
55	Manual segmentation of individual muscles of the quadriceps femoris using MRI: A reappraisal. Journal of Magnetic Resonance Imaging, 2014, 40, 239-247.	1.9	66
56	Drugâ€induced readthrough of premature stop codons leads to the stabilization of laminin α2 chain mRNA in CMD myotubes. Journal of Gene Medicine, 2008, 10, 217-224.	1.4	65
57	Muscleblind-Like Proteins. American Journal of Pathology, 2009, 174, 216-227.	1.9	65
58	Proteomics of muscle chronological ageing in post-menopausal women. BMC Genomics, 2014, 15, 1165.	1.2	64
59	Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLoS Genetics, 2015, 11, e1005092.	1.5	64
60	Generation of Isogenic D4Z4 Contracted and Noncontracted Immortal Muscle Cell Clones from a Mosaic Patient. American Journal of Pathology, 2012, 181, 1387-1401.	1.9	63
61	Combination of Myostatin Pathway Interference and Dystrophin Rescue Enhances Tetanic and Specific Force in Dystrophic mdx Mice. Molecular Therapy, 2010, 18, 881-887.	3.7	62
62	Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization. Molecular Cancer Research, 2003, 1, 643-53.	1.5	62
63	DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics, 2014, 23, 171-181.	1.4	61
64	Immortalized Skin Fibroblasts Expressing Conditional MyoD as a Renewable and Reliable Source of Converted Human Muscle Cells to Assess Therapeutic Strategies for Muscular Dystrophies: Validation of an Exon-Skipping Approach to Restore Dystrophin in Duchenne Muscular Dystrophy Cells. Human Gene Therapy, 2009, 20, 784-790.	1.4	60
65	Age-related appearance of tubular aggregates in the skeletal muscle of almost all male inbred mice. Histochemistry and Cell Biology, 2000, 114, 477-481.	0.8	58
66	Abnormalities of satellite cells function in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 264-271.	2.3	57
67	Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cellular and Molecular Life Sciences, 2013, 70, 2159-2174.	2.4	55
68	Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 2019, 10, 1974.	5.8	55
69	Plantarflexor Muscle–Tendon Properties are Associated With Mobility in Healthy Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 996-1002.	1.7	54
70	Troponin T mRNA and Protein Isoforms in the Human Left Ventricle: Pattern of Expression in Failing and Control Hearts. Journal of Molecular and Cellular Cardiology, 1997, 29, 3043-3055.	0.9	52
71	Physiological and functional evaluation of healthy young and older men and women: design of the European MyoAge study. Biogerontology, 2013, 14, 325-337.	2.0	50
72	DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation. PLoS ONE, 2009, 4, e7482.	1.1	49

#	Article	IF	CITATIONS
73	Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging. Molecular and Cellular Proteomics, 2014, 13, 283-294.	2.5	49
74	Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cytoskeleton, 2001, 49, 51-66.	4.4	48
75	Telomere Length as a Tool to Monitor Satellite Cell Amplification for Cell-Mediated Gene Therapy. Human Gene Therapy, 1996, 7, 1347-1350.	1.4	47
76	Atrophy, Fibrosis, and Increased PAX7-Positive Cells in Pharyngeal Muscles of Oculopharyngeal Muscular Dystrophy Patients. Journal of Neuropathology and Experimental Neurology, 2013, 72, 234-243.	0.9	47
77	Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiology of Aging, 2018, 63, 54-64.	1.5	47
78	Association between osteocalcin and cognitive performance in healthy older adults. Age and Ageing, 2016, 45, 844-849.	0.7	46
79	The muscle-specific enolase is an early marker of human myogenesis. Journal of Muscle Research and Cell Motility, 2001, 22, 535-544.	0.9	45
80	Changes in Myotonic Dystrophy Protein Kinase Levels and Muscle Development in Congenital Myotonic Dystrophy. American Journal of Pathology, 2003, 162, 1001-1009.	1.9	45
81	Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice Correlates With Increased Proliferation and Migration. Molecular Therapy, 2012, 20, 146-154.	3.7	45
82	Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction–Induced Injury But Worsens Heart Function in mdx Mice. American Journal of Pathology, 2013, 182, 1509-1518.	1.9	45
83	Distribution of satellite cells in the human vastus lateralis muscle during aging. Experimental Gerontology, 2002, 37, 1513-1514.	1.2	44
84	Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. European Journal of Human Genetics, 2011, 19, 647-654.	1.4	44
85	Expression and modification proteomics during skeletal muscle ageing. Biogerontology, 2013, 14, 339-352.	2.0	43
86	Current advances in cell therapy strategies for muscular dystrophies. Expert Opinion on Biological Therapy, 2011, 11, 157-176.	1.4	42
87	Comparative Analysis of Genetically Engineered Immunodeficient Mouse Strains as Recipients for Human Myoblast Transplantation. Cell Transplantation, 2005, 14, 457-467.	1.2	40
88	HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skeletal Muscle, 2017, 7, 20.	1.9	40
89	Fetal myosin heavy chain increases in the human masseter muscle during aging. FEBS Letters, 1996, 386, 87-90.	1.3	39
90	A developmentally regulated disappearance of slow myosin in fast-type muscles of the mouse. FEBS Letters, 1984, 177, 51-56.	1.3	38

#	Article	IF	CITATIONS
91	Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell, 2015, 14, 236-248.	3.0	38
92	Ageâ€related alterations in muscle architecture are a signature of sarcopenia: the ultrasound sarcopenia index. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 973-982.	2.9	38
93	Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging, 2016, 8, 3375-3389.	1.4	38
94	A discrepancy resolved: human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscular Disorders, 2001, 11, 747-752.	0.3	37
95	Human Myoblast Engraftment Is Improved in Laminin-Enriched Microenvironment. Transplantation, 2008, 85, 566-575.	0.5	37
96	Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathology and Applied Neurobiology, 2015, 41, 270-287.	1.8	37
97	Development of fiber types in human fetal muscle. Journal of the Neurological Sciences, 1984, 66, 107-115.	0.3	36
98	Skeletal Muscles Express the Xenobiotic-metabolizing Enzyme Arylamine N-acetyltransferase. Journal of Histochemistry and Cytochemistry, 2003, 51, 789-796.	1.3	36
99	Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin–proteasome pathway. Neuromuscular Disorders, 2010, 20, 319-325.	0.3	36
100	Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes. Human Gene Therapy, 2016, 27, 117-126.	1.4	35
101	Transitions in contractile protein isozymes during muscle cell differentiation. Biochimie, 1979, 61, 625-632.	1.3	34
102	Productive Infection of Human Skeletal Muscle Cells by Pandemic and Seasonal Influenza A(H1N1) Viruses. PLoS ONE, 2013, 8, e79628.	1.1	34
103	Expression of myogenic regulatory factors and myo-endothelial remodeling in sporadic inclusion body myositis. Neuromuscular Disorders, 2013, 23, 75-83.	0.3	32
104	Correlation between low <scp>FAT</scp> 1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Annals of Neurology, 2015, 78, 387-400.	2.8	32
105	Severe muscle dysfunction precedes collagen tissue proliferation in mdx mouse diaphragm. Journal of Applied Physiology, 2003, 94, 1744-1750.	1.2	30
106	Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. Journal of Proteome Research, 2015, 14, 3348-3361.	1.8	30
107	Exon 32 Skipping of Dysferlin Rescues Membrane Repair in Patients' Cells. Journal of Neuromuscular Diseases, 2015, 2, 281-290	1.1	29
108	Skeletal Muscle Regenerative Potential of Human MuStem Cells following Transplantation into Injured Mice Muscle. Molecular Therapy, 2018, 26, 618-633.	3.7	29

#	Article	IF	CITATIONS
109	Improvement of Dysphagia following Cricopharyngeal Myotomy in a Group of Elderly Patients. Annals of Otology, Rhinology and Laryngology, 1995, 104, 603-609.	0.6	28
110	Influence of early postnatal cold exposure on myofiber maturation in pig skeletal muscle. Journal of Muscle Research and Cell Motility, 2001, 22, 439-452.	0.9	28
111	Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1508-R1514.	0.9	28
112	Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Research, 2016, 44, 10929-10945.	6.5	28
113	Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skeletal Muscle, 2016, 6, 23.	1.9	28
114	Pharmacological modulation of the ER stress response ameliorates oculopharyngeal muscular dystrophy. Human Molecular Genetics, 2019, 28, 1694-1708.	1.4	28
115	Lamin Mutations Cause Increased YAP Nuclear Entry in Muscle Stem Cells. Cells, 2020, 9, 816.	1.8	28
116	Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skeletal Muscle, 2013, 3, 4.	1.9	27
117	Predictive markers of clinical outcome in the GRMD dog model of Duchenne Muscular Dystrophy. DMM Disease Models and Mechanisms, 2014, 7, 1253-61.	1.2	27
118	Contractile properties, structure and fiber phenotype of intact and regenerating slow-twitch muscles of mice treated with cyclosporin A. Cell and Tissue Research, 2002, 308, 143-156.	1.5	26
119	The adult fast isozyme of myosin is present in a nerve-muscle tissue culture system. Differentiation, 1984, 25, 84-87.	1.0	25
120	Dynamic Left/Right Regionalisation of Endogenous Myosin Light Chain 3F Transcripts in the Developing Mouse Heart. Journal of Molecular and Cellular Cardiology, 1998, 30, 1067-1081.	0.9	25
121	Proteome analysis of differentiating human myoblasts by dialysisâ€assisted twoâ€dimensional gel electrophoresis (DAGE). Proteomics, 2008, 8, 264-278.	1.3	25
122	Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e35346.	1.1	25
123	Prolonged Myalgia in Sindbis Virus Infection: Case Description and In Vitro Infection of Myotubes and Myoblasts. Journal of Infectious Diseases, 2012, 206, 407-414.	1.9	23
124	Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures. European Journal of Pharmacology, 2012, 694, 1-12.	1.7	23
125	The Rag2–ll2rb–Dmd– Mouse: a Novel Dystrophic and Immunodeficient Model to Assess Innovating Therapeutic Strategies for Muscular Dystrophies. Molecular Therapy, 2013, 21, 1950-1957.	3.7	23
126	CellWhere: graphical display of interaction networks organized on subcellular localizations. Nucleic Acids Research, 2015, 43, W571-W575.	6.5	23

GILLIAN S BUTLER-BROWNE

#	Article	IF	CITATIONS
127	Myosin Heavy Chain Expression in Human Laryngeal Muscle Fibers. Annals of Otology, Rhinology and Laryngology, 2000, 109, 216-220.	0.6	22
128	Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle. FEBS Letters, 2004, 561, 191-194.	1.3	21
129	Muscle Wasting Induced by HTLV-1 Tax-1 Protein. American Journal of Pathology, 2005, 167, 1609-1619.	1.9	21
130	TGF-β1 favors the development of fast type identity during soleus muscle regeneration. Journal of Muscle Research and Cell Motility, 2006, 27, 1-8.	0.9	21
131	Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain isoforms. , 1996, 88, 131.		21
132	Nuclear protein spreading: implication for pathophysiology of neuromuscular diseases. Human Molecular Genetics, 2014, 23, 4125-4133.	1.4	20
133	CD49d is a disease progression biomarker and a potential target for immunotherapy in Duchenne muscular dystrophy. Skeletal Muscle, 2015, 5, 45.	1.9	20
134	Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathologica, 2017, 134, 869-888.	3.9	20
135	Protective effect of female gender–related factors on muscle forceâ€generating capacity and fragility in the dystrophic <i>mdx</i> mouse. Muscle and Nerve, 2013, 48, 68-75.	1.0	19
136	Myofiber Androgen Receptor Promotes Maximal Mechanical Overload-Induced Muscle Hypertrophy and Fiber Type Transition in Male Mice. Endocrinology, 2014, 155, 4739-4748.	1.4	18
137	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	1.1	18
138	HTLV-1-associated inflammatory myopathies: Low proviral load and moderate inflammation in 13 patients from West Indies and West Africa. Journal of Clinical Virology, 2013, 57, 70-76.	1.6	17
139	Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in <i>mdx</i> mice of both genders. Muscle and Nerve, 2015, 52, 788-794.	1.0	17
140	miRNA Expression in Control and FSHD Fetal Human Muscle Biopsies. PLoS ONE, 2015, 10, e0116853.	1.1	17
141	Human muscle stem cells. Current Opinion in Pharmacology, 2006, 6, 295-300.	1.7	16
142	Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Human Gene Therapy, 2020, 31, 233-240.	1.4	16
143	Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. American Journal of Pathology, 2015, 185, 2012-2024.	1.9	15
144	Crosstalk Between Innate and T Cell Adaptive Immunity With(in) the Muscle. Frontiers in Physiology, 2020, 11, 573347.	1.3	15

GILLIAN S BUTLER-BROWNE

#	Article	IF	CITATIONS
145	Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. International Journal of Molecular Sciences, 2021, 22, 306.	1.8	15
146	Regenerative potential of human muscle stem cells in chronic inflammation. Arthritis Research and Therapy, 2011, 13, R207.	1.6	14
147	Differential integrin expression by T lymphocytes: Potential role in DMD muscle damage. Journal of Neuroimmunology, 2010, 223, 128-130.	1.1	13
148	A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1771-1784.	2.9	13
149	Differentiation-dependent susceptibility of human muscle cells to Zika virus infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008282.	1.3	12
150	Acetylcholine Receptor Formation in Mouse–Chick Chimera. Experimental Cell Research, 1997, 236, 29-42.	1.2	11
151	Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscular Disorders, 2014, 24, 960-972.	0.3	11
152	Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells. PLoS ONE, 2014, 9, e103990.	1.1	11
153	The lymphocyte secretome from young adults enhances skeletal muscle proliferation and migration, but effects are attenuated in the secretome of older adults. Physiological Reports, 2015, 3, e12518.	0.7	10
154	Activated dendritic cells modulate proliferation and differentiation of human myoblasts. Cell Death and Disease, 2018, 9, 551.	2.7	10
155	<p>Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells</p> . Stem Cells and Cloning: Advances and Applications, 2019, Volume 12, 1-9.	2.3	10
156	Myoblasts and Embryonic Stem Cells Differentially Engraft in a Mouse Model of Genetic Dilated Cardiomyopathy. Molecular Therapy, 2013, 21, 1064-1075.	3.7	9
157	Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles. Steroids, 2014, 87, 6-11.	0.8	9
158	Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1063-1078.	2.9	9
159	Biochemical and immunocytochemical analysis in chronic proximal spinal muscular atrophy. Muscle and Nerve, 1994, 17, 400-410.	1.0	8
160	Effect of locomotor training on muscle performance in the context of nerve–muscle communication dysfunction. Muscle and Nerve, 2012, 45, 567-577.	1.0	8
161	KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects. Neurobiology of Disease, 2017, 106, 35-48.	2.1	8
162	A functional human motor unit platform engineered from human embryonic stem cells and immortalized skeletal myoblasts. Stem Cells and Cloning: Advances and Applications, 2018, Volume 11, 85-93.	2.3	8

#	Article	IF	CITATIONS
163	Arboviruses and Muscle Disorders: From Disease to Cell Biology. Viruses, 2020, 12, 616.	1.5	8
164	Transcription of the embryonic myosin light chain gene is restricted to type II muscle fibers in human adult masseter. Developmental Biology, 1991, 147, 374-380.	0.9	7
165	Induction and stability of the adult myosin phenotype in striated muscles of dwarf mice after chronic thyroid hormone treatment. FEBS Journal, 1989, 185, 555-561.	0.2	6
166	Challenges in cell transplantation for muscular dystrophy. Experimental Cell Research, 2021, 409, 112908.	1.2	5
167	Analysis of growth factor expression in affected and unaffected muscles of oculo-pharyngeal muscular dystrophy (OPMD) patients: A pilot study. Neuromuscular Disorders, 2009, 19, 199-206.	0.3	4
168	Understanding and combating age-related muscle weakness: MYOAGE challenge. Biogerontology, 2013, 14, 229-230.	2.0	4
169	Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Molecular Therapy, 2017, 25, 2345-2359.	3.7	4
170	A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. Journal of Clinical Medicine, 2020, 9, 3238.	1.0	4
171	Comparison of Different Methods to Estimate the Volume of the Quadriceps Femoris Muscles Using MRI. Journal of Medical Imaging and Health Informatics, 2015, 5, 1201-1207.	0.2	4
172	Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Neglected Tropical Diseases, 2022, 16, e0010166.	1.3	3
173	Modification of the dystrophic phenotype after transient neonatal denervation: Role of MHC isoforms. Journal of Neurobiology, 1992, 23, 751-765.	3.7	2
174	Combined methods to evaluate human cells in muscle xenografts. PLoS ONE, 2019, 14, e0211522.	1.1	2
175	LINK-AGE: Coordination and consolidation of European biogerontology: en route towards formation of a European college of biogerontology. Mechanisms of Ageing and Development, 2006, 127, 761-762.	2.2	1
176	Association of interleukin-6 rs1800796 polymorphism with reduced cognitive performance in healthy older adults. Meta Gene, 2019, 19, 51-55.	0.3	1
177	Cell-Based Therapies in Skeletal Muscle Disease. , 2012, , 1053-1063.		0
178	Response to Comment on Pellegrinelli et al. Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes 2015;64:3121–3134. Diabetes, 2015, 64, e23-e24.	0.3	0
179	Myogenic Potential of Stem Cells: In Vivo Assessment. Pancreatic Islet Biology, 2013, , 1-17.	0.1	0