Frank C Dillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038520/publications.pdf Version: 2024-02-01

FRANK C DILLON

#	Article	IF	CITATIONS
1	Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon, 2010, 48, 3033-3041.	5.4	111
2	Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N. Carbon, 2012, 50, 2816-2823.	5.4	39
3	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon, 2013, 58, 159-169.	5.4	37
4	Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol–gel processing. Carbon, 2010, 48, 2212-2217.	5.4	36
5	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor. Carbon, 2013, 58, 151-158.	5.4	36
6	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling. Carbon, 2015, 88, 148-156.	5.4	33
7	Facile, fast, and inexpensive synthesis of monodisperse amorphous Nickel-Phosphide nanoparticles of predefined size. Chemical Communications, 2011, 47, 4108.	2.2	31
8	Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study. Faraday Discussions, 2014, 172, 473-496.	1.6	28
9	WS ₂ 2D nanosheets in 3D nanoflowers. Chemical Communications, 2014, 50, 12360-12362.	2.2	26
10	Controlled growth of Ni nanocrystals on SrTiO3 and their application in the catalytic synthesis of carbon nanotubes. Chemical Communications, 2013, 49, 3748.	2.2	18
11	N-SWCNTs production by aerosol-assisted CVD method. Chemical Physics Letters, 2012, 538, 108-111.	1.2	16
12	Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst. Carbon, 2013, 60, 5-15.	5.4	12
13	Stiffness, strength and interwall sliding in aligned and continuous multi-walled carbon nanotube/glass composite microcantilevers. Acta Materialia, 2015, 100, 118-125.	3.8	9
14	Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures. RSC Advances, 2012, 2, 3748.	1.7	7
15	Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes. RSC Advances, 2013, 3, 20040.	1.7	6
16	Morphology – composition correlations in carbon nanotubes synthesised with nitrogen and phosphorus containing precursors. Physical Chemistry Chemical Physics, 2015, 17, 2137-2142.	1.3	6
17	Metal-free chemical vapor deposition growth of graphitic tubular structures on engineered perovskite oxide substrates. Carbon, 2016, 99, 591-598.	5.4	4
18	Direct visualization of electrical transport-induced alloy formation and composition changes in filled multi-wall carbon nanotubes by in situ scanning transmission electron microscopy. Journal of Alloys and Compounds, 2017, 721, 501-505.	2.8	2

#	Article	IF	CITATIONS
19	Janus Structured Multiwalled Carbon Nanotube Forests for Simple Asymmetric Surface Functionalization and Patterning at the Nanoscale. ACS Applied Nano Materials, 2020, 3, 7554-7562.	2.4	2
20	Carbon nanotube columns for flow systems: influence of synthesis parameters. Nanoscale Advances, 2020, 2, 5874-5882.	2.2	2