Sergio Ando'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4037637/publications.pdf

Version: 2024-02-01

361413 330143 2,568 38 20 37 citations h-index g-index papers 45 45 45 2219 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302, 107-120.	4.4	296
2	Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 2015, 6, 8511.	12.8	283
3	Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 2009, 277, 422-432.	4.4	281
4	Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga–Brahmaputra,) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 50 230
5	Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 2008, 273, 138-151.	4.4	229
6	Chapter 20 Heavy Mineral Concentration in Modern Sands: Implications for Provenance Interpretation. Developments in Sedimentology, 2007, , 517-545.	0.5	167
7	Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 2012, 280, 165-178.	2.1	163
8	Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 2005, 229, 287-302.	4.4	128
9	Provenance of Passive-Margin Sand (Southern Africa). Journal of Geology, 2014, 122, 17-42.	1.4	103
10	Heavy Minerals for Junior Woodchucks. Minerals (Basel, Switzerland), 2019, 9, 148.	2.0	103
11	Raman spectroscopy in heavy-mineral studies. Geological Society Special Publication, 2014, 386, 395-412.	1.3	66
12	Raman spectroscopy as a tool for magnesium estimation in Mgâ€calcite. Journal of Raman Spectroscopy, 2017, 48, 983-992.	2.5	59
13	Causes of dust size variability in central East Antarctica (Dome B): Atmospheric transport from expanded South American sources duringÂMarine Isotope Stage 2. Quaternary Science Reviews, 2017, 168, 55-68.	3.0	46
14	Dynamic uplift, recycling, and climate control on the petrology of passive-margin sand (Angola). Sedimentary Geology, 2018, 375, 86-104.	2.1	43
15	Geological and soil maps of the Palaeo-Agulhas Plain for the Last Glacial Maximum. Quaternary Science Reviews, 2020, 235, 105858.	3.0	42
16	Gravimetric Separation of Heavy Minerals in Sediments and Rocks. Minerals (Basel, Switzerland), 2020, 10, 273.	2.0	37
17	Using Fourier transform infrared spectroscopy to determine mineral phases in sediments. Sedimentary Geology, 2018, 375, 27-35.	2.1	35
18	Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa. Climate of the Past, 2017, 13, 649-665.	3.4	28

#	Article	IF	Citations
19	Provenance of Bengal Shelf Sediments: 2. Petrology and Geochemistry of Sand. Minerals (Basel,) Tj ETQq1 1 0.784	4314 rgBT 2.0	/Overlock 1
20	Raman counting: a new method to determine provenance of silt. Rendiconti Lincei, 2011, 22, 327-347.	2.2	22
21	Integrating heavy-mineral, geochemical and biomarker analyses of Plio-Pleistocene sandy and silty turbidites: a novel approach for provenance studies (Indus Fan, IODP Expedition 355). Geological Magazine, 2020, 157, 929-938.	1.5	19
22	Provenance of Bengal Shelf Sediments: 1. Mineralogy and Geochemistry of Silt. Minerals (Basel,) Tj ETQq0 0 0 rgB	T /Overloc 2.0	k 10 Tf 50 6 17
23	Comparability of heavy mineral data – The first interlaboratory round robin test. Earth-Science Reviews, 2020, 211, 103210.	9.1	16
24	Multimineral Fingerprinting of Transhimalayan and Himalayan Sources of Indus-Derived Thal Desert Sand (Central Pakistan). Minerals (Basel, Switzerland), 2019, 9, 457.	2.0	15
25	Quick, Easy, and Economic Mineralogical Studies of Flooded Chalk for EOR Experiments Using Raman Spectroscopy. Minerals (Basel, Switzerland), 2018, 8, 221.	2.0	14
26	The Provenance of Terrigenous Components in Marine Sediments Along the East Coast of Southern Africa. Geochemistry, Geophysics, Geosystems, 2018, 19, 1946-1962.	2.5	13
27	A multidisciplinary approach for the quantitative provenance analysis of siltstone: Mesozoic Mandawa Basin, southeastern Tanzania. Geological Society Special Publication, 2020, 484, 275-293.	1.3	12
28	Provenance of Cenozoic Indus Fan Sediments (IODP Sites U1456 and U1457). Journal of Sedimentary Research, 2020, 90, 1114-1127.	1.6	12
29	Composition of Amphiboles in the Tremolite–Ferro–Actinolite Series by Raman Spectroscopy. Minerals (Basel, Switzerland), 2019, 9, 491.	2.0	11
30	Soil-formation in the central Mediterranean: Insight from heavy minerals. Catena, 2021, 197, 104998.	5.0	10
31	Detrital orthopyroxene as a tracer of geodynamic setting:. Chemical Geology, 2022, 596, 120809.	3.3	9
32	Evolution of the Upper Yellow River as Revealed by Changes in Heavy-Mineral and Geochemical (REE) Signatures of Fluvial Terraces (Lanzhou, China). Minerals (Basel, Switzerland), 2019, 9, 603.	2.0	7
33	Provenance of Neogene sandstones in western Taiwan traced with garnet geochemistry and zircon geochronology. Basin Research, 2021, 33, 2069-2088.	2.7	7
34	Application of Tip-Enhanced Raman Spectroscopy for the nanoscale characterization of flooded chalk. Journal of Applied Physics, 2018, 124, .	2.5	6
35	Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano. Cryosphere, 2021, 15, 1383-1397.	3.9	5
36	Climatic Forcing of Plioâ€Pleistocene Formation of the Modern Limpopo River, South Africa. Geophysical Research Letters, 2021, 48, e2021GL093887.	4.0	5

SERGIO ANDO'

#	Article	IF	CITATIONS
37	Optically stimulated luminescence dating of a stratigraphic Late Glacial–Holocene sequence in the Poplain (Bubano quarry, Bologna, Italy). Quaternary International, 2009, 199, 45-55.	1.5	3
38	Editorial for Special Issue "Heavy Minerals― Minerals (Basel, Switzerland), 2020, 10, 356.	2.0	0