Michelle L Oyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4037394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012, 11, 642-649.	27.5	1,346
2	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Sciences, 2016, 17, 1976.	4.1	454
3	Mechanical characterisation of hydrogel materials. International Materials Reviews, 2014, 59, 44-59.	19.3	442
4	Biomimetic layer-by-layer assembly of artificial nacre. Nature Communications, 2012, 3, 966.	12.8	303
5	Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. Journal of Materials Research, 2003, 18, 139-150.	2.6	288
6	Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nature Materials, 2009, 8, 763-770.	27.5	223
7	Spherical Indentation Creep Following Ramp Loading. Journal of Materials Research, 2005, 20, 2094-2100.	2.6	211
8	A practical guide for analysis of nanoindentation data. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 396-407.	3.1	185
9	Analytical techniques for indentation of viscoelastic materials. Philosophical Magazine, 2006, 86, 5625-5641.	1.6	172
10	Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21, 185-194.	3.1	166
11	Spherical indentation load-relaxation of soft biological tissues. Journal of Materials Research, 2006, 21, 2003-2010.	2.6	165
12	Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends in Biotechnology, 2014, 32, 564-570.	9.3	143
13	Nanoindentation hardness of mineralized tissues. Journal of Biomechanics, 2006, 39, 2699-2702.	2.1	123
14	Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philosophical Magazine, 2006, 86, 5691-5703.	1.6	117
15	Cell death after cartilage impact occurs around matrix cracks. Journal of Orthopaedic Research, 2003, 21, 881-887.	2.3	116
16	Poroelastic nanoindentation responses of hydrated bone. Journal of Materials Research, 2008, 23, 1307-1314.	2.6	109
17	Viscoelastic and poroelastic mechanical characterization of hydrated gels. Journal of Materials Research, 2009, 24, 973-979.	2.6	109
18	Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage. ACS Central Science, 2016, 2, 885-895.	11.3	103

#	Article	IF	CITATIONS
19	Nanoindentation of Biological and Biomimetic Materials. Experimental Techniques, 2013, 37, 73-87.	1.5	98
20	On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomaterialia, 2017, 57, 373-383.	8.3	96
21	Insight into differences in nanoindentation properties of bone. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18, 90-99.	3.1	94
22	Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 20-27.	3.4	90
23	Hydration effects on the micro-mechanical properties of bone. Journal of Materials Research, 2006, 21, 1962-1968.	2.6	89
24	Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Materialia, 2007, 55, 3633-3639.	7.9	89
25	Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Materials Science and Engineering C, 2017, 72, 220-227.	7.3	85
26	Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone, 2012, 50, 1317-1323.	2.9	80
27	Separating poroviscoelastic deformation mechanisms in hydrogels. Applied Physics Letters, 2013, 102, .	3.3	80
28	Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood, 2011, 117, 1053-1060.	1.4	78
29	Hydrogel Composite Materials for Tissue Engineering Scaffolds. Jom, 2013, 65, 505-516.	1.9	78
30	Premature rupture of the fetal membranes: Is the amnion the major determinant?. American Journal of Obstetrics and Gynecology, 2006, 195, 510-515.	1.3	76
31	Collagen type IV at the fetal–maternal interface. Placenta, 2015, 36, 59-68.	1.5	74
32	Composite bounds on the elastic modulus of bone. Journal of Biomechanics, 2008, 41, 2585-2588.	2.1	70
33	Microstructure and Mechanics of the Chorioamnion Membrane with an Emphasis on Fracture Properties. Annals of the New York Academy of Sciences, 2007, 1101, 166-185.	3.8	68
34	Indentation stiffness of aging human costal cartilage. Acta Biomaterialia, 2008, 4, 97-103.	8.3	68
35	A microfluidics assay to study invasion of human placental trophoblast cells. Journal of the Royal Society Interface, 2017, 14, 20170131.	3.4	68
36	Tissue stiffness at the human maternal–fetal interface. Human Reproduction, 2019, 34, 1999-2008.	0.9	68

#	Article	IF	CITATIONS
37	The Compelling Case for Indentation as a Functional Exploratory and Characterization Tool. Journal of the American Ceramic Society, 2015, 98, 2671-2680.	3.8	67
38	Nanoindentation of hydrated materials and tissues. Current Opinion in Solid State and Materials Science, 2015, 19, 317-323.	11.5	62
39	Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations. Acta Biomaterialia, 2008, 4, 117-125.	8.3	59
40	Mechanical failure of human fetal membrane tissues. Journal of Materials Science: Materials in Medicine, 2004, 15, 651-658.	3.6	58
41	Failure mechanisms in fibrous scaffolds. Acta Biomaterialia, 2013, 9, 7326-7334.	8.3	58
42	Uniaxial and biaxial mechanical behavior of human amnion. Journal of Materials Research, 2005, 20, 2902-2909.	2.6	57
43	Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 19-25.	3.1	56
44	Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. Journal of Materials Science: Materials in Medicine, 2007, 18, 623-628.	3.6	54
45	Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy. Journal of Biomechanics, 2015, 48, 1606-1613.	2.1	53
46	Three-dimensional modeling of human placental terminal villi. Placenta, 2016, 43, 54-60.	1.5	51
47	Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta Biomaterialia, 2016, 41, 193-203.	8.3	51
48	Composite hydrogels for nucleus pulposus tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 16-26.	3.1	49
49	Viscous-elastic-plastic behavior of bone using Berkovich nanoindentation. Mechanics of Time-Dependent Materials, 2010, 14, 111-124.	4.4	46
50	Size effects in indentation of hydrated biological tissues. Journal of Materials Research, 2012, 27, 245-255.	2.6	45
51	Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 18-26.	3.1	42
52	Viscoelastic Properties of Membranes Measured by Spherical Indentation. Cellular and Molecular Bioengineering, 2009, 2, 49-56.	2.1	40
53	Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 339-347.	3.1	38
54	Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 610-617.	3.1	38

#	Article	IF	CITATIONS
55	Branching toughens fibrous networks. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 74-82.	3.1	38
56	Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion. PLoS ONE, 2017, 12, e0171588.	2.5	38
57	Indentation responses of time-dependent films on stiff substrates. Journal of Materials Research, 2004, 19, 2487-2497.	2.6	37
58	Biomimetic bone-like composites fabricated through an automated alternate soaking process. Acta Biomaterialia, 2011, 7, 3586-3594.	8.3	36
59	Relationship between permeability and diffusivity in polyethylene glycol hydrogels. AIP Advances, 2018, 8, 105006.	1.3	36
60	Failure Properties of Cervical Spinal Ligaments Under Fast Strain Rate Deformations. Spine, 2007, 32, E7-E13.	2.0	35
61	The Materials Science of Bone: Lessons from Nature for Biomimetic Materials Synthesis. MRS Bulletin, 2008, 33, 49-55.	3.5	35
62	Uniaxial stress–relaxation and stress–strain responses of human amnion. Journal of Materials Science: Materials in Medicine, 2004, 15, 619-624.	3.6	33
63	Mechanical behaviour of electrospun fibre-reinforced hydrogels. Journal of Materials Science: Materials in Medicine, 2014, 25, 681-690.	3.6	33
64	Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels. Soft Matter, 2015, 11, 7191-7200.	2.7	33
65	Estimating material elasticity by spherical indentation load-relaxation tests on viscoelastic samples of finite thickness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1418-1429.	3.0	32
66	Nanoindentation behavior and mechanical properties measurement of polymeric materials. International Journal of Materials Research, 2007, 98, 370-378.	0.3	31
67	Systematic mechanical evaluation of electrospun gelatin meshes. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 412-419.	3.1	30
68	Mechanical properties and cytocompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. Journal of Materials Research, 2006, 21, 3090-3098.	2.6	29
69	Do we know the strength of the chorioamnion?. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2009, 144, S128-S133.	1.1	29
70	Technique for estimating fracture resistance of cultured neocartilage. Journal of Materials Science: Materials in Medicine, 2001, 12, 327-332.	3.6	28
71	Computational modeling of the structure-function relationship in human placental terminal villi. Journal of Biomechanics, 2016, 49, 3780-3787.	2.1	27
72	Abnormal fetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. Journal of Orthopaedic Research, 2017, 35, 2135-2144.	2.3	27

#	Article	IF	CITATIONS
73	Cartilage-like electrostatic stiffening of responsive cryogel scaffolds. Scientific Reports, 2017, 7, 42948.	3.3	27
74	Spherical indentation of a finite poroelastic coating. Applied Physics Letters, 2008, 93, .	3.3	26
75	Indentation across interfaces between stiff and compliant tissues. Acta Biomaterialia, 2017, 56, 36-43.	8.3	26
76	Permeability and shear modulus of articular cartilage in growing mice. Biomechanics and Modeling in Mechanobiology, 2016, 15, 205-212.	2.8	25
77	Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues. Journal of Biomechanics, 2020, 113, 110090.	2.1	25
78	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Sciences, 2016, 17, 1976.	4.1	24
79	Toughening in electrospun fibrous scaffolds. APL Materials, 2015, 3, .	5.1	22
80	Indentation variability of natural nanocomposite materials. Journal of Materials Research, 2008, 23, 760-767.	2.6	21
81	Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties. Acta Biomaterialia, 2019, 83, 189-198.	8.3	20
82	Nanomechanical properties of modern and fossil bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289, 25-32.	2.3	19
83	Time-dependent fracture toughness of cornea. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 116-123.	3.1	19
84	Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of <i>Sepia officinalis</i> . APL Materials, 2017, 5, .	5.1	19
85	Age-related changes in mouse bone permeability. Journal of Biomechanics, 2014, 47, 1110-1116.	2.1	18
86	Investigation of the Young's modulus and thermal expansion of amorphous titania-doped tantala films. Applied Optics, 2014, 53, 3196.	1.8	17
87	Viscoelastic effects in small-scale indentation of biological materials. International Journal of Surface Science and Engineering, 2007, 1, 180.	0.4	16
88	Viscoelastic analysis of single-component and composite PEG and alginate hydrogels. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 7-14.	3.4	14
89	Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16–19, 2014: Periodically perforated core–shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. Journal of Biomedical	4.0	13
90	Bioengineering Approaches for Placental Research. Annals of Biomedical Engineering, 2021, 49, 1805-1818.	2.5	13

#	Article	IF	CITATIONS
91	Preparation of polymeric samples containing a graduated modulus region and development of nanoindentation linescan techniques. Polymer Testing, 2010, 29, 494-502.	4.8	11
92	Biomimetic calcium carbonate–gelatin composites as a model system for eggshell mineralization. Journal of Materials Research, 2012, 27, 3157-3164.	2.6	11
93	Villous Tree Model with Active Contractions for Estimating Blood Flow Conditions in the Human Placenta. Open Biomedical Engineering Journal, 2017, 11, 36-48.	0.5	11
94	Compressive failure of hydrogel spheres. Journal of Materials Research, 2020, 35, 1227-1235.	2.6	11
95	Stiffening by Osmotic Swelling Constraint in Cartilageâ€Like Cell Culture Scaffolds. Macromolecular Bioscience, 2018, 18, e1800247.	4.1	10
96	Fracture toughness of human amniotic membranes. Interface Focus, 2019, 9, 20190012.	3.0	10
97	Hard-Soft Tissue Interface Engineering. Advances in Experimental Medicine and Biology, 2015, 881, 187-204.	1.6	10
98	Relating viscoelastic nanoindentation creep and load relaxation experiments. International Journal of Materials Research, 2008, 99, 823-828.	0.3	9
99	Special issue on nanoindentation of biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 311.	3.1	9
100	Gelatin nanofiber-reinforced alginate gel scaffolds for corneal tissue engineering. , 2013, 2013, 6671-4.		9
101	Patellar tendon augmentation after removal of its central third limits joint tissue changes. Journal of Orthopaedic Research, 1999, 17, 28-36.	2.3	8
102	Electrospun Fiber - Hydrogel Composites for Nucleus Pulposus Tissue Engineering. Materials Research Society Symposia Proceedings, 2012, 1417, 42.	0.1	8
103	An interpenetrating network composite for a regenerative spinal disc application. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 842-848.	3.1	8
104	The viscoelastic response of electrospun poly(vinyl alcohol) mats. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 383-388.	3.1	8
105	On the failure and fracture of hydrogels for cartilage replacement. JPhys Materials, 2021, 4, 021001.	4.2	8
106	A poroelastic master curve for timeâ€dependent and multiscale mechanics of hydrogels. Journal of Materials Research, 2021, 36, 2582-2590.	2.6	8
107	Engineering Approaches for Understanding Osteogenesis: Hydrogels as Synthetic Bone Microenvironments. Hormone and Metabolic Research, 2016, 48, 726-736.	1.5	7
108	A Model for Nonlinear Viscoelastic Mechanical Responses of Collagenous Soft Tissues. Materials Research Society Symposia Proceedings, 2005, 898, 1.	0.1	6

#	Article	IF	CITATIONS
109	Creep properties from indentation tests by analytical and numerical techniques. International Journal of Materials Research, 2009, 100, 954-959.	0.3	6
110	Poroelastic Indentation Analysis for Hydrated Biological Tissues. Materials Research Society Symposia Proceedings, 2006, 975, 1.	0.1	5
111	Nanoindentation and Finite Element Analysis of Resin-Embedded Bone Samples as a Three-Phase Composite Material. Materials Research Society Symposia Proceedings, 2005, 874, 1.	0.1	4
112	Tuneable bioinspired lens. Bioinspiration and Biomimetics, 2015, 10, 046004.	2.9	4
113	Premature Rupture of Membranes and Severe Weather Systems. Frontiers in Physiology, 2020, 11, 524.	2.8	4
114	Load-Relaxation Characteristics of Chemical and Physical Hydrogels as Soft Tissue Mimics. Experimental Mechanics, 2021, 61, 939-949.	2.0	4
115	Spherical Indentation Creep Following Ramp Loading. Materials Research Society Symposia Proceedings, 2004, 841, R5.9.1.	0.1	3
116	Finite Element Modeling of Bone Ultrastructure as a Two-phase Composite. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	3
117	Elastic Modulus and Mineral Density of Dentine and Enamel in Natural Caries Lesions. Materials Research Society Symposia Proceedings, 2005, 874, 1.	0.1	3
118	Bioengineering in women's health: part I. Interface Focus, 2019, 9, 20190042.	3.0	3
119	Computational modeling in pregnancy biomechanics research. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105099.	3.1	3
120	Indentation of Nonlinearly Viscoelastic Solids. Materials Research Society Symposia Proceedings, 2007, 1049, 1.	0.1	2
121	Viscoelastic Behavior of a Centrally Loaded Circular Film Being Clamped at the Circumference. Materials Research Society Symposia Proceedings, 2007, 1049, 1.	0.1	2
122	Fracture Resistance of Human Amnion. , 2007, , 841.		2
123	3D surface reconstruction of human terminal villi and the fetal capillary bed. Placenta, 2014, 35, A8-A9.	1.5	2
124	Correlating Microstructure to in situ Micromechanical Behaviour and Toughening Strategies in Biological Materials. Microscopy and Microanalysis, 2019, 25, 372-373.	0.4	2
125	Bioengineering in women's health, volume 2: pregnancy—from implantation to parturition. Interface Focus, 2019, 9, 20190081.	3.0	2
126	Uniaxial and Biaxial Mechanical Behavior of Human Amnion. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	1

#	Article	IF	CITATIONS
127	Effects of gelatin on mechanical properties of hydroxyapatite-gelatin nano-composites. Materials Research Society Symposia Proceedings, 2005, 898, 1.	0.1	1
128	Nanoindentation Measurements of Bone Viscoelasticity as a Function of Hydration State. Materials Research Society Symposia Proceedings, 2005, 898, 1.	0.1	1
129	Effect of Water on Mechanical Properties of Mineralized Tissue Composites. Materials Research Society Symposia Proceedings, 2006, 975, 1.	0.1	1
130	Quantitative modelling of viscoelasticity of isotropic fibrous composites with viscoelastic matrices. Theoretical and Applied Mechanics Letters, 2011, 1, 052006.	2.8	1
131	Multi-Scale Permeability of Murine Bone Measured by Nanoindentation. , 2013, , .		1
132	Nanobiomechanics of living materials. Interface Focus, 2014, 4, 20140001.	3.0	1
133	Towards the Development of a Cartilage-like Nanofiber-Hydrogel Composite. MRS Advances, 2020, 5, 1783-1790.	0.9	1
134	Multiscale Mechanics of Eggshell and Shell Membrane. Jom, 2021, 73, 1676-1683.	1.9	1
135	Bone Composite Mechanics Related to Collagen Hydration State. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 269-276.	0.2	1
136	Variability of Nanoindentation Responses of Bone and Artificial Bone-Like Composites. , 2004, , .		1
137	Time-Dependent Indentation Response of Human Cervical Tissue. , 2012, , .		1
138	A poroelastic master curve for time-dependent and multiscale mechanics of hydrogels. Journal of Materials Research, 2021, 36, 1-9.	2.6	1
139	Constitutive model development of fetal membrane mechanics: Mechanical testing and numerical simulation. American Journal of Obstetrics and Gynecology, 2005, 193, S112.	1.3	Ο
140	Fracture and Energy Partitioning in Uncooked and Cooked Noodles. Materials Research Society Symposia Proceedings, 2006, 975, 1.	0.1	0
141	Interest in Bone-Like Materials Includes Thermal Qualities. MRS Bulletin, 2008, 33, 725-725.	3.5	Ο
142	Biomimetic Mineral-Protein Composites formed by an Automated Alternate Soaking Process. Materials Research Society Symposia Proceedings, 2012, 1419, 1.	0.1	0
143	<i>In vitro</i> characterisation of the elasticity and the permeability of the mouse cartilage during growth using microindentation. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 68-69.	1.6	0
144	Inverse Finite Element Analysis of the Indentation Response of Human Cervical Tissue. , 2013, , .		0

9