Xiaoguang Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/403674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	10.3	85
2	Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 19019-19026.	8.0	75
3	Approaching the Hole Mobility Limit of GaSb Nanowires. ACS Nano, 2015, 9, 9268-9275.	14.6	70
4	Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nature Communications, 2019, 10, 1664.	12.8	70
5	Ionic Covalent Organic Frameworks for Energy Devices. Advanced Materials, 2021, 33, e2105647.	21.0	64
6	Selfâ€Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications. Advanced Materials Technologies, 2019, 4, 1800541.	5.8	62
7	High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 20454-20459.	8.0	58
8	Enhanced performance of perovskite solar cells based on vertical TiO 2 nanotube arrays with full filling of CH 3 NH 3 PbI 3. Applied Surface Science, 2018, 451, 250-257.	6.1	32
9	Gel polymer electrolyte with MXene to extend cycle lifespan of flexible and rechargeable Zinc–Air batteries. Journal of Power Sources, 2022, 523, 231020.	7.8	25
10	Coupling of Nickel Boride and Ni(OH) ₂ Nanosheets with Hierarchical Interconnected Conductive Porous Structure Synergizes the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 4555-4561.	3.7	23
11	Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors. Nano Research, 2019, 12, 1796-1803.	10.4	20
12	Selfâ€Assembly of Colloidal Particles for Fabrication of Structural Color Materials toward Advanced Intelligent Systems. Advanced Intelligent Systems, 2020, 2, 1900085.	6.1	18
13	Nanofiber Composite for Improved Water Retention and Dendrites Suppression in Flexible Zincâ€Air Batteries. Small, 2021, 17, e2103048.	10.0	18
14	Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures. Scientific Reports, 2016, 6, 34139.	3.3	17
15	Modulating the Morphology and Electrical Properties of GaAs Nanowires via Catalyst Stabilization by Oxygen. ACS Applied Materials & Interfaces, 2015, 7, 5591-5597.	8.0	16
16	Hierarchically porous <scp>Nâ€doped</scp> carbon nanofibers derived from <scp>ZIF</scp> â€8/ <scp>PAN</scp> composites for benzene adsorption. Journal of Applied Polymer Science, 2021, 138, 50431.	2.6	13
17	Hierarchically structured PVP porous fibers derived from the embedding of NaY zeolite synergize the adsorption of benzene. Composites Part B: Engineering, 2019, 179, 107542.	12.0	12
18	<scp>Spray printed</scp> conjugated polymer on tissue paper for highly sensitive pressure sensors. Polymer International, 2021, 70, 450-456.	3.1	12

#	Article	IF	CITATIONS
19	Phosphorus/nitrogen co-doped and bimetallic MOF-derived cathode for all-solid-state rechargeable zinc–air batteries. RSC Advances, 2020, 10, 33327-33333.	3.6	11
20	Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO ₂ Nanotube Arrays on Various Substrates. ACS Applied Materials & Interfaces, 2017, 9, 6265-6272.	8.0	10
21	Multilevel Resistive Switching Memory Based on a CH3NH3PbI 3â^'xClx Film with Potassium Chloride Additives. Nanoscale Research Letters, 2020, 15, 126.	5.7	7