
David Mimoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4036676/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ ΜΙΜΟΠΝ

#	Article	IF	CITATIONS
1	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274
2	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	8.1	238
3	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	12.9	207
4	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	12.9	194
5	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
6	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
7	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
8	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
9	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	8.1	80
10	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	8.1	77
11	The Noise Model of the SEIS Seismometer of the InSight Mission to Mars. Space Science Reviews, 2017, 211, 383-428.	8.1	73
12	Planetary and exoplanetary low frequency radio observations from the Moon. Planetary and Space Science, 2012, 74, 156-166.	1.7	68
13	Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers. Space Science Reviews, 2017, 211, 429-455.	8.1	65
14	Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 153, 50-60.	2.9	57
15	Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Physics of the Earth and Planetary Interiors, 2016, 258, 28-42.	1.9	56
16	Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission. Space Science Reviews, 2017, 211, 457-483.	8.1	53
17	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	3.7	52
18	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47

David Mimoun

#	Article	IF	CITATIONS
19	Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006387.	3.6	44
20	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	8.1	41
21	Seismometer Detection of Dust Devil Vortices by Ground Tilt. Bulletin of the Seismological Society of America, 2015, 105, 3015-3023.	2.3	39
22	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme. Experimental Astronomy, 2009, 23, 849-892.	3.7	38
23	Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity. Seismological Research Letters, 2017, 88, 1290-1302.	1.9	37
24	Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planetary and Space Science, 2014, 103, 238-249.	1.7	36
25	Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planetary and Space Science, 2012, 68, 123-145.	1.7	32
26	Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planetary and Space Science, 2019, 165, 260-271.	1.7	32
27	In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.	27.8	30
28	Detection of Artificially Generated Seismic Signals Using Balloonâ€Borne Infrasound Sensors. Geophysical Research Letters, 2018, 45, 3393-3403.	4.0	26
29	Aerial Seismology Using Balloon-Based Barometers. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 10191-10201.	6.3	25
30	Recording laser-induced sparks on Mars with the SuperCam microphone. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 174, 106000.	2.9	25
31	Micro-meteoroid seismic uplift and regolith concentration on kilometric scale asteroids. Icarus, 2015, 253, 159-168.	2.5	18
32	Numerical Simulation of the Atmospheric Signature of Artificial and Natural Seismic Events. Geophysical Research Letters, 2018, 45, 12,085.	4.0	17
33	Probing the internal structure of the asteriod Didymoon with a passive seismic investigation. Planetary and Space Science, 2017, 144, 89-105.	1.7	16
34	Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006410.	3.6	16
35	An active source seismo-acoustic experiment using tethered balloons to validate instrument concepts and modelling tools for atmospheric seismology. Geophysical Journal International, 2021, 225, 186-199.	2.4	15
36	Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life. Planetary and Space Science, 2020, 193, 104960.	1.7	15

DAVID MIMOUN

#	Article	IF	CITATIONS
37	A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces. Review of Scientific Instruments, 2016, 87, 084504.	1.3	13
38	Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian Atmosphere. Icarus, 2021, 354, 114060.	2.5	12
39	Infrasound From Large Earthquakes Recorded on a Network of Balloons in the Stratosphere. Geophysical Research Letters, 2022, 49, .	4.0	9
40	Exploring planets and asteroids with 6DoF sensors: Utopia and realism. Earth, Planets and Space, 2020, 72, .	2.5	8
41	High Precision SEIS Calibration for the InSight Mission and Its Applications. Space Science Reviews, 2019, 215, 1.	8.1	7
42	The Site Tilt and Lander Transfer Function from the Short-Period Seismometer of InSight on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2889-2908.	2.3	7
43	Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity. Seismological Research Letters, 0, , .	1.9	5
44	Forward Modeling of the Phobos Tides and Applications to the First Martian Year of the InSight Mission. Earth and Space Science, 2021, 8, e2021EA001669.	2.6	4
45	Finding SEIS North on Mars: Comparisons Between SEIS Sundial, Inertial and Imaging Measurements and Consequences for Seismic Analysis. Earth and Space Science, 2021, 8, e2020EA001286.	2.6	3
46	Isolation of Seismic Signal from InSight/SEIS-SP Microseismometer Measurements. Space Science Reviews, 2018, 214, 1.	8.1	2
47	Determining True North on Mars by Using a Sundial on InSight. Space Science Reviews, 2019, 215, 1.	8.1	2
48	Sub-band interferometry on polarimetric SAR dataset. , 2007, , .		1
49	Fiber optic gyroscope For 6-component planetary seismology. , 2019, , .		1
50	Probing the interior of asteroid Apophis: a unique opportunity in 2029. Proceedings of the International Astronomical Union, 2012, 10, 481-482.	0.0	0