Saulius Balevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4036452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured Manganite Films Grown by Pulsed Injection MOCVD: Tuning Low- and High-Field Magnetoresistive Properties for Sensors Applications. Sensors, 2022, 22, 605.	3.8	6
2	Investigation and Comparison of Specific Antibodies' Affinity Interaction with SARS-CoV-2 Wild-Type, B.1.1.7, and B.1.351 Spike Protein by Total Internal Reflection Ellipsometry. Biosensors, 2022, 12, 351.	4.7	14
3	Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation. Journal of Colloid and Interface Science, 2022, 626, 113-122.	9.4	12
4	Total internal reflection ellipsometry for kinetics-based assessment of bovine serum albumin immobilization on ZnO nanowires. Journal of Materials Chemistry C, 2021, 9, 1345-1352.	5.5	18
5	The Application of a CMR-B-Scalar Sensor for the Investigation of the Electromagnetic Acceleration of Type II Superconductors. Sensors, 2021, 21, 1293.	3.8	2
6	Hand-Held Magnetic Field Meter Based on Colossal Magnetoresistance-B-Scalar Sensor. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2808-2816.	4.7	7
7	Magnetic Field Measurements during Magnetic Pulse Welding Using CMR-B-Scalar Sensors. Sensors, 2020, 20, 5925.	3.8	7
8	Porous Aluminium Oxide Coating for the Development of Spectroscopic Ellipsometry Based Biosensor: Evaluation of Human Serum Albumin Adsorption. Coatings, 2020, 10, 1018.	2.6	12
9	Pulsed magnetic flux penetration dynamics inside a thin-walled superconducting tube. Journal of Applied Physics, 2020, 127, 113901.	2.5	1
10	Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives. Biosensors and Bioelectronics, 2020, 156, 112112.	10.1	27
11	Magnetic Field Expulsion From a Conducting Projectile in a Pulsed Serial Augmented Railgun. IEEE Transactions on Plasma Science, 2020, 48, 727-732.	1.3	7
12	Compact Square-Wave Pulse Electroporator with Controlled Electroporation Efficiency and Cell Viability. Symmetry, 2020, 12, 412.	2.2	15
13	Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands. Sensors and Actuators B: Chemical, 2019, 297, 126770.	7.8	18
14	Room temperature Co-doped manganite/graphene sensor operating at high pulsed magnetic fields. Scientific Reports, 2019, 9, 9497.	3.3	11
15	The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Scientific Reports, 2019, 9, 14731.	3.3	32
16	La–Sr–Mn–Co–O Films for High Pulsed Magnetic Field Measurements at Cryogenic Temperatures. IEEE Transactions on Plasma Science, 2019, 47, 4541-4546.	1.3	1
17	Compact Manganite-Graphene Magnetoresistive Sensor. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	3
18	Hybrid graphene-manganite thin film structure for magnetoresistive sensor application. Nanotechnology, 2019, 30, 355503.	2.6	9

SAULIUS BALEVICIUS

#	Article	IF	CITATIONS
19	Increase of Operating Temperature of Magnetic Field Sensors Based on La–Sr–Mn–O Films With Mn Excess. IEEE Transactions on Plasma Science, 2019, 47, 4530-4535.	1.3	18
20	Multistep Accelerated Aging of Magnetic Field Sensors Based on Nanostructured La–Sr–Mn–O Thin Films. IEEE Transactions on Plasma Science, 2017, 45, 2787-2793.	1.3	0
21	Magnetoresistance Relaxation Anisotropy of Nanostructured La-Sr(Ca)-Mn-O Films Induced by High-Pulsed Magnetic Fields. IEEE Transactions on Plasma Science, 2017, 45, 2773-2779.	1.3	5
22	Nanostructured La–Sr–Mn–Co–O Films for Room-Temperature Pulsed Magnetic Field Sensors. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	13
23	Influence of MOCVD Growth Pressure on Magnetoresistance of Nanostructured La-Ca-Mn-O Films Used for Magnetic Field Sensors. IEEE Transactions on Plasma Science, 2017, 45, 2780-2786.	1.3	2
24	Magnetoresistance anisotropy of ultrathin epitaxial La0.83Sr0.17MnO3 films. Journal of Applied Physics, 2017, 122, 213901.	2.5	2
25	Relaxation of Ferromagnetic and Paramagnetic State of Thin La-Sr-MnO Films Exposed by High-Power Picosecond Duration Optical Pulses. IEEE Transactions on Plasma Science, 2017, 45, 2794-2799.	1.3	0
26	Specifics of the X7R capacitors application in the high frequency inverters. , 2016, , .		2
27	An Increase of a Down-Hole Nuclear Magnetic Resonance Tool's Reliability and Accuracy by the Cancellation of a Multi-Module DC/AC Converter's Output's Higher Harmonics. IEEE Access, 2016, 4, 7912-7920.	4.2	3
28	Accelerated ageing effects in nanostructured La0.83Sr0.17MnO3 films. Thin Solid Films, 2015, 589, 331-337.	1.8	5
29	Improvement in the long-term stability of parameters of encapsulated magnetic field sensors based on LaSrMnO thin films. Sensors and Actuators A: Physical, 2015, 228, 112-117.	4.1	5
30	Fast Resistance Relaxation in Nanostructured La–Ca–Mn–O Films in Pulsed Magnetic Fields. IEEE Transactions on Plasma Science, 2015, 43, 3445-3450.	1.3	4
31	Permeabilization of yeast <i>Saccharomyces cerevisiae</i> cell walls using nanosecond high power electrical pulses. Applied Physics Letters, 2014, 105, .	3.3	15
32	Magnetoresistance and Resistance Relaxation of Nanostructured La-Ca-MnO Films in Pulsed Magnetic Fields. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	11
33	Electric fieldâ€induced effects on yeast cell wall permeabilization. Bioelectromagnetics, 2014, 35, 136-144.	1.6	24
34	Fast Two-stage Protector Against Electromagnetic Pulse Based on Electroresistance Effect in Polycrystalline La-Sr(Ca)-Mn-O Films. Medziagotyra, 2014, 20, .	0.2	0
35	Nanostructured Manganite Films as Protectors Against Fast Electromagnetic Pulses. IEEE Transactions on Plasma Science, 2013, 41, 2890-2895.	1.3	1
36	High-Frequency CMR-B-Scalar Sensor for Pulsed Magnetic Field Measurement. IEEE Transactions on Plasma Science, 2013, 41, 2885-2889.	1.3	7

SAULIUS BALEVICIUS

#	Article	IF	CITATIONS
37	Current Sensing System for Protection of High Power Frequency Converters. IEEE Transactions on Plasma Science, 2013, 41, 2896-2900.	1.3	0
38	Magnetoresistance Relaxation in Thin La-Sr-Mn-O Films Exposed to High-Pulsed Magnetic Fields. IEEE Transactions on Plasma Science, 2013, 41, 2830-2835.	1.3	6
39	Velocity-Induced Current Profiles Inside the Rails of an Electric Launcher. IEEE Transactions on Plasma Science, 2013, 41, 1520-1525.	1.3	15
40	CMR-B-Scalar Sensor Application for High Magnetic Field Measurement in Nondestructive Pulsed Magnets. IEEE Transactions on Magnetics, 2013, 49, 5480-5484.	2.1	19
41	Theoretical Analysis and Experimental Determination of the Relationships Between the Parameters of the Electric Field Pulse Required to Electroporate the Cells. IEEE Transactions on Plasma Science, 2013, 41, 2913-2919.	1.3	14
42	System for the Nanoporation of Biological Cells Based on an Optically-Triggered High-Voltage Spark-Gap Switch. IEEE Transactions on Plasma Science, 2013, 41, 2706-2711.	1.3	10
43	Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films. Thin Solid Films, 2013, 540, 194-201.	1.8	6
44	Magnetic Diffusion Inside the Rails of an Electromagnetic Launcher: Experimental and Numerical Studies. IEEE Transactions on Plasma Science, 2013, 41, 2790-2795.	1.3	19
45	Ageing effects on electrical resistivity and magnetoresistance of nanostructured manganite films. Lithuanian Journal of Physics, 2012, 52, 224-230.	0.4	7
46	Distributed laboratory system for characterization of current distribution in electromagnetic rail launchers. , 2011, , .		0
47	B-Scalar Sensor Using CMR Effect in Thin Polycrystalline Manganite Films. IEEE Transactions on Plasma Science, 2011, 39, 411-416.	1.3	36
48	Current Distribution and Contact Mechanisms in Static Railgun Experiments With Brush Armatures. IEEE Transactions on Plasma Science, 2011, 39, 431-436.	1.3	16
49	Fast Protector Against EMP Using Thin Epitaxial and Polycrystalline Manganite Films. IEEE Electron Device Letters, 2011, 32, 551-553.	3.9	10
50	European Laboratories for Pulsed Power Research. Journal of the Korean Physical Society, 2011, 59, 3594-3598.	0.7	4
51	Vilnius High Magnetic Field Centre Facilities. Journal of Low Temperature Physics, 2010, 159, 406-409.	1.4	11
52	Electrical Conductivity of Thin Polycrystalline La0.83Sr0.17MnO3 Films in Pulsed High Electric andÂMagnetic Fields. Journal of Low Temperature Physics, 2010, 159, 68-71.	1.4	2
53	Colossal Magnetoresistance Properties ofÂLa0.83Sr0.17MnO3 Thin Films Grown by MOCVD onÂLucalox Substrate. Journal of Low Temperature Physics, 2010, 159, 64-67.	1.4	16
54	B-Scalar Measurements by CMR-Based Sensors of Highly Inhomogeneous Transient Magnetic Fields. IEEE Transactions on Magnetics, 2009, 45, 5301-5306.	2.1	23

SAULIUS BALEVICIUS

#	Article	IF	CITATIONS
55	Large effect of the deformation on magnetoresistance of stretched and compressed thin polycrystalline Bi films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 293-297.	1.8	0
56	Magnetic Diffusion in Railguns: Measurements Using CMR-Based Sensors. IEEE Transactions on Magnetics, 2009, 45, 430-435.	2.1	50
57	Fast reversible thermoelectrical switching in manganite thin films. Applied Physics Letters, 2007, 90, 212503.	3.3	9
58	Highly Local Measurements of Strong Transient Magnetic Fields During Railgun Experiments Using CMR-Based Sensors. IEEE Transactions on Magnetics, 2007, 43, 370-375.	2.1	38
59	Two-phase structure of ultra-thin La–Sr–MnO films. Thin Solid Films, 2006, 515, 691-694.	1.8	9
60	Manganite Sensor for Measurements of Magnetic Field Disturbances of Pulsed Actuators. Solid State Phenomena, 2006, 113, 459-464.	0.3	8
61	Frequency Dependence of Electrical Response of Polycrystalline LCMO Thin Films. Acta Physica Polonica A, 2005, 107, 193-197.	0.5	1
62	EMP Effects on High- <tex>\$T _c\$</tex> Superconducting Devices. IEEE Transactions on Applied Superconductivity, 2004, 14, 112-118.	1.7	5
63	RAMAN SCATTERING IN THE MAGNETIZED SEMICONDUCTOR PLASMA. International Journal of Modern Physics B, 2004, 18, 3825-3829.	2.0	0
64	Negative magnetoresistance of polycrystalline thin Bi1ÂxSbxalloy films in quantizing magnetic fields. Semiconductor Science and Technology, 2003, 18, 430-433.	2.0	5
65	<title>Short electrical pulse generation using light-induced switching in high-Tc superconductors</title> .,2001,,.		Ο
66	Dynamics of resistivity response of La0.67Ca0.33MnO3 films in pulsed high magnetic fields. Journal of Magnetism and Magnetic Materials, 2000, 211, 243-247.	2.3	13
67	Electric properties of planar Ag/HgBa2CaCu2O6+δinterface. Physica C: Superconductivity and Its Applications, 1999, 316, 83-88.	1.2	3
68	Electric Properties of Contacts t o HTS Thin Films at Current Densities J > J c. Journal of Low Temperature Physics, 1999, 117, 1555-1559.	1.4	5
69	Relaxation of La0.67Ca0.33MnO3 Films Resistance in Pulsed High Magnetic Fields. Journal of Low Temperature Physics, 1999, 117, 1653-1657.	1.4	5
70	Fast High-Voltage Light Triggered Superconducting Opening Switch. Journal of Low Temperature Physics, 1999, 117, 1561-1565.	1.4	2
71	High quality YBa2Cu3O7 films grown on LaAlO3 by single source pulsed metalorganic chemical vapor deposition. Journal of Crystal Growth, 1998, 191, 79-83.	1.5	17
72	Flux flow during high power nanosecond S-N switching in thin high-T/sub c/ films. IEEE Transactions on Magnetics, 1993, 29, 3589-3591.	2.1	3

#	Article	IF	CITATIONS
73	Structural transformations in thin amorphous semiconductor films induced by electrical nanosecond switching. Thin Solid Films, 1984, 112, 75-80.	1.8	9
74	Nanosecond switching in amorphous In2Te3 films. Physica Status Solidi A, 1976, 35, K41-K43.	1.7	14
75	On the effects of threshold switching and memory in In2 Te3 thin amorphous films. Physica Status Solidi A, 1975, 32, K11-K13.	1.7	10