Edwin H Sutanudjaja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4036236/publications.pdf

Version: 2024-02-01

30 papers

2,100 citations

16 h-index 27 g-index

62 all docs

62 docs citations

times ranked

62

2926 citing authors

#	Article	IF	CITATIONS
1	Environmental flow limits to global groundwater pumping. Nature, 2019, 574, 90-94.	27.8	360
2	PCR-GLOBWBÂ2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 2018, 11, 2429-2453.	3.6	307
3	Hyper-resolution global hydrological modelling: what is next?. Hydrological Processes, 2015, 29, 310-320.	2.6	280
4	A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Advances in Water Resources, 2017, 102, 53-67.	3.8	158
5	A high-resolution global-scale groundwater model. Hydrology and Earth System Sciences, 2015, 19, 823-837.	4.9	141
6	Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences, 2017, 21, 3125-3144.	4.9	128
7	Toward seamless hydrologic predictions across spatial scales. Hydrology and Earth System Sciences, 2017, 21, 4323-4346.	4.9	81
8	Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resources Research, 2020, 56, e2020WR027556.	4.2	73
9	Common irrigation drivers of freshwater salinisation in river basins worldwide. Nature Communications, 2021, 12, 4232.	12.8	63
10	Hydrological impacts of global land cover change and human water use. Hydrology and Earth System Sciences, 2017, 21, 5603-5626.	4.9	60
11	Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators. , 0, , .		58
12	Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrology and Earth System Sciences, 2017, 21, 2053-2074.	4.9	47
13	Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations. Hydrology and Earth System Sciences, 2016, 20, 3059-3076.	4.9	46
14	Evaluation of Groundwater Storage Variations Estimated from GRACE Data Assimilation and State-of-the-Art Land Surface Models in Australia and the North China Plain. Remote Sensing, 2018, 10, 483.	4.0	45
15	Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models. Scientific Reports, 2019, 9, 10746.	3.3	40
16	Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Communications Earth & Environment, 2021, 2, .	6.8	37
17	Global River Discharge and Floods in the Warmer Climate of the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL089375.	4.0	18
18	Random forests-based error-correction of streamflow from a large-scale hydrological model: Using model state variables to estimate error terms. Computers and Geosciences, 2022, 159, 105019.	4.2	18

#	Article	IF	CITATIONS
19	Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet. Energy, 2022, 245, 123339.	8.8	16
20	Toward Global Stochastic River Flood Modeling. Water Resources Research, 2020, 56, e2020WR027692.	4.2	15
21	Global to regional scale evaluation of adaptation measures to reduce the future water gap. Environmental Modelling and Software, 2020, 124, 104578.	4.5	13
22	Accounting for Multisectoral Dynamics in Supporting Equitable Adaptation Planning: A Case Study on the Rice Agriculture in the Vietnam Mekong Delta. Earth's Future, 2021, 9, e2020EF001939.	6.3	11
23	Towards a global land subsidence map. Proceedings of the International Association of Hydrological Sciences, 0, 372, 83-87.	1.0	11
24	Quantifying Regional Fresh Submarine Groundwater Discharge With the Lumped Modeling Approach CoCaâ€RFSGD. Water Resources Research, 2019, 55, 5321-5341.	4.2	8
25	Offshore fresh groundwater in coastal unconsolidated sediment systems as a potential fresh water source in the 21st century. Environmental Research Letters, 2022, 17, 014021.	5.2	8
26	Climate change impacts on water sustainability of South African crop production. Environmental Research Letters, 2022, 17, 084017.	5.2	8
27	Systemic change in the Rhine-Meuse basin: Quantifying and explaining parameters trends in the PCR-GLOBWB global hydrological model. Advances in Water Resources, 2021, 155, 104013.	3.8	5
28	Large-scale sensitivities of groundwater and surface water to groundwater withdrawal. Hydrology and Earth System Sciences, 2021, 25, 5859-5878.	4.9	5
29	Salinity impacts on irrigation water-scarcity in food bowl regions of the US and Australia. Environmental Research Letters, 2022, 17, 084002.	5.2	3
30	The eWaterCycle project. , 2016, , .		0