Sagar Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035892/publications.pdf

Version: 2024-02-01

119	6,150	44	74
papers	citations	h-index	g-index
132	132	132	6005 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synthesis of an amphiphilic copolymer using biopolymer-dextran <i>via</i> a combination of ROP and RAFT techniques. Polymer Chemistry, 2022, 13, 1394-1400.	3.9	5
2	Î ² -Cyclodextrin-Based Ultrahigh Stretchable, Flexible, Electro- and Pressure-Responsive, Adhesive, Transparent Hydrogel as Motion Sensor. ACS Applied Materials & Interfaces, 2022, 14, 17065-17080.	8.0	42
3	Amino Acid Inspired Alginate-Based pH Sensitive Polymeric Micelles via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Applied Polymer Materials, 2022, 4, 4432-4444.	4.4	11
4	The UCST phase transition of a dextran based copolymer in aqueous media with tunable thermoresponsive behavior. Polymer Chemistry, 2022, 13, 3865-3869.	3.9	7
5	pH-Responsive Copolymeric Network Gel Using Methacrylated β-Cyclodextrin for Controlled Codelivery of Hydrophilic and Hydrophobic Drugs. ACS Applied Bio Materials, 2022, 5, 3530-3543.	4.6	7
6	Macromolecular selective flocculant derived from functionalized starch towards beneficiation of low-quality iron ore: Atomistic simulations and experimental studies. Materials Today Communications, 2022, 32, 103810.	1.9	5
7	Reversible addition fragmentation chain transferâ€mediated bioconjugated amphiphilic graftâ€block copolymer using dextran, poly (<i>N</i> â€isopropylacrylamide), and poly (vinyl acetate). Journal of Applied Polymer Science, 2021, 138, 50381.	2.6	6
8	Development of a highly efficient selective flocculant based on functionalized ⟨scp⟩βâ€cyclodextrin⟨ scp⟩ toward beneficiation of lowâ€quality iron ore. Polymers for Advanced Technologies, 2021, 32, 2169-2175.	3.2	3
9	In-situ deposited CdS NPs on pH induced fully exfoliated layered titanate-biopolymeric composite and its photocatalytic activity. Polymer, 2021, 225, 123791.	3.8	6
10	Functionalized polysaccharide-based flocculants for solid liquid separation of wastewater. Journal of the Indian Chemical Society, 2021, 98, 100066.	2.8	6
11	Dextran based amphiphilic self-assembled biopolymeric macromolecule synthesized via RAFT polymerization as indomethacin carrier. International Journal of Biological Macromolecules, 2021, 183, 718-726.	7.5	14
12	Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules, 2021, 22, 514-533.	5.4	18
13	Reversible Addition–Fragmentation Chain Transfer-Mediated Amphiphilic Copolymeric Composite as a Nanocarrier for Drug Delivery Application. ACS Applied Polymer Materials, 2021, 3, 5386-5396.	4.4	4
14	Poly(<i>N</i> -vinyl imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules, 2021, 22, 5256-5269.	5.4	17
15	Cationically functionalized amylopectin as an efficient flocculant for treatment of coal suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124229.	4.7	15
16	Crosslinked chitosan embedded TiO2 NPs and carbon dots-based nanocomposite: An excellent photocatalyst under sunlight irradiation. International Journal of Biological Macromolecules, 2020, 164, 3676-3686.	7. 5	20
17	Opposite swelling characteristics through changing the connectivity in a biopolymeric hydrogel based on glycogen and glycine. Polymer Chemistry, 2020, 11, 2630-2634.	3.9	8
18	Development of a Thermoresponsive Polymeric Composite Film Using Cross-Linked \hat{l}^2 -Cyclodextrin Embedded with Carbon Quantum Dots as a Transdermal Drug Carrier. ACS Applied Bio Materials, 2020, 3, 3285-3293.	4.6	20

#	Article	IF	CITATIONS
19	Synthesis of a novel copolymer using glycogen and poly(lactide) as a carrier of dual drugs—ornidazole and ofloxacin. Journal of Polymer Science Part A, 2019, 57, 1697-1703.	2.3	2
20	\hat{l}^2 -Cyclodextrin based pH and thermo-responsive biopolymeric hydrogel as a dual drug carrier. Materials Chemistry Frontiers, 2019, 3, 385-393.	5.9	38
21	Removal of toxic pollutants from aqueous media using poly (vinyl imidazole) crosslinked chitosan synthesised through microwave assisted technique. Journal of Colloid and Interface Science, 2019, 542, 187-197.	9.4	29
22	Development of a Novel Nanocomposite Using Polypyrrole Grafted Chitosan-Decorated CDs with Improved Photocatalytic Activity under Solar Light Illumination. ACS Sustainable Chemistry and Engineering, 2019, 7, 9416-9421.	6.7	25
23	Biopolymeric pH-responsive fluorescent gel for in-vitro and in-vivo colon specific delivery of metronidazole and ciprofloxacin. European Polymer Journal, 2019, 114, 255-264.	5.4	18
24	Novel nanocomposite derived from ZnO/CdS QDs embedded crosslinked chitosan: An efficient photocatalyst and effective antibacterial agent. Journal of Hazardous Materials, 2019, 369, 398-407.	12.4	62
25	Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies. Journal of Molecular Liquids, 2019, 275, 867-878.	4.9	50
26	Graft copolymeric flocculant using functionalized starch towards treatment of blast furnace effluent. International Journal of Biological Macromolecules, 2019, 125, 35-40.	7.5	33
27	Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil. Polymer, 2018, 140, 122-130.	3.8	21
28	Synthesis of triblock copolymeric micelle based on poly (ethylene glycol) and poly (vinyl acetate) through reversible addition–fragmentation chain transfer polymerization. Journal of Colloid and Interface Science, 2018, 524, 122-128.	9.4	6
29	Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electrochemical study. Journal of Molecular Liquids, 2018, 251, 470-479.	4.9	74
30	Biocompatible, stimuliâ€responsive hydrogel of chemically crosslinked βâ€cyclodextrin as amoxicillin carrier. Journal of Applied Polymer Science, 2018, 135, 45939.	2.6	27
31	Synthesis of RAFTâ€Mediated Amphiphilic Graft Copolymeric Micelle Using Dextran and Poly (Oleic Acid) toward Oral Delivery of Nifedipine. Journal of Polymer Science Part A, 2018, 56, 2354-2363.	2.3	17
32	Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 498-504.	4.9	11
33	Amphiphilic graft copolymeric micelle using dextrin and poly (N-vinyl caprolactam) via RAFT polymerization: Development and application. International Journal of Biological Macromolecules, 2018, 119, 954-961.	7.5	13
34	Single-pot biofabrication of living fibers for tissue engineering applications. Journal of Materials Research, 2018, 33, 2019-2028.	2.6	1
35	Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells. Carbohydrate Polymers, 2017, 171, 27-38.	10.2	41
36	Anionically functionalized guar gum embedded with silica nanoparticles: An efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresource Technology, 2017, 225, 367-376.	9.6	57

#	Article	IF	CITATIONS
37	Nanocomposite hydrogel derived from poly (methacrylic acid)/carboxymethyl cellulose/AuNPs: A potential transdermal drugs carrier. Polymer, 2017, 120, 9-19.	3.8	33
38	Effect of chemical modification of a natural polysaccharide on its inhibitory action on mild steel in 15% HCl solution. Journal of Adhesion Science and Technology, 2017, 31, 2468-2489.	2.6	31
39	Cross-Linked Biopolymer Stabilized Exfoliated Titanate Nanosheet-Supported AgNPs: A Green Sustainable Ternary Nanocomposite Hydrogel for Catalytic and Antimicrobial Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 1881-1891.	6.7	46
40	Amphiphilic copolymer derived from tamarind gum and poly (methyl methacrylate) via ATRP towards selective removal of toxic dyes. Carbohydrate Polymers, 2017, 160, 1-8.	10.2	18
41	In Situ Silver Nanowire Deposited Cross-Linked Carboxymethyl Cellulose: A Potential Transdermal Anticancer Drug Carrier. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36583-36595.	8.0	65
42	Synthesis of poly (ethylene glycol)-block-poly (acrylamide)-block-poly (lactide) amphiphilic copolymer through ATRP, ROP and click chemistry: Characterization, micellization and pH-triggered sustained release behaviour. Polymer, 2017, 127, 150-158.	3.8	13
43	Effect of Fe3O4 NPs on micellization and release behavior of CBABC-type pentablock copolymer. Polymer, 2017, 133, 184-194.	3.8	6
44	Oleoyl-Chitosan-Based Nanofiber Mats Impregnated with Amniotic Membrane Derived Stem Cells for Accelerated Full-Thickness Excisional Wound Healing. ACS Biomaterials Science and Engineering, 2017, 3, 1738-1749.	5.2	36
45	Stimuli-responsive, biocompatible hydrogel derived from glycogen and poly(N-isopropylacrylamide) for colon targeted delivery of ornidazole and 5-amino salicylic acid. Polymer Chemistry, 2016, 7, 5426-5435.	3.9	44
46	Development of Crosslinked Chitosan/Au Nanocomposite, Its Characterization and Application towards Solar Light Driven Photocatalytic Degradation of Toxic Organic Compounds. ChemistrySelect, 2016, 1, 6115-6126.	1.5	9
47	Biocompatible amphiphilic microgel derived from dextrin and poly(methyl methacrylate) for dual drugs carrier. Polymer, 2016, 107, 282-291.	3.8	14
48	Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polymer Chemistry, 2016, 7, 2965-2975.	3.9	50
49	Efficient Removal of Toxic Dyes via Simultaneous Adsorption and Solar Light Driven Photodegradation Using Recyclable Functionalized Amylopectin–TiO ₂ –Au Nanocomposite. ACS Sustainable Chemistry and Engineering, 2016, 4, 1679-1688.	6.7	78
50	A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Advances, 2016, 6, 19605-19611.	3.6	60
51	Synthesis of copolymer derived from tamarind kernel polysaccharide (TKP) and poly(methacrylic acid) via SI-ATRP with enhanced pH triggered dye removal. RSC Advances, 2016, 6, 2958-2965.	3.6	16
52	Synthesis and characterization of biodegradable copolymer derived from dextrin and poly(vinyl) Tj ETQq0 0 0 rgl	3.6 erlo	ck <u>1</u> 0 Tf 50 1
53	SBA-16: Application for the removal of neutral, cationic, and anionic dyes from aqueous medium. Journal of Environmental Chemical Engineering, 2016, 4, 157-166.	6.7	34
54	Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. Journal of Hazardous Materials, 2016, 301, 127-136.	12.4	83

#	Article	IF	CITATIONS
55	Development and application of a nanocomposite derived from crosslinked HPMC and Au nanoparticles for colon targeted drug delivery. RSC Advances, 2015, 5, 27481-27490.	3.6	27
56	Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances, 2015, 5, 25014-25050.	3.6	117
57	Dextrin and Poly(acrylic acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin. ACS Applied Materials & Interfaces, 2015, 7, 4791-4803.	8.0	105
58	Synthesis of glycogen and poly (acrylic acid)-based graft copolymers via ATRP and its application for selective removal of Pb2+ ions from aqueous solution. European Polymer Journal, 2015, 66, 33-46.	5.4	42
59	Modified guar gum/SiO ₂ : development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environmental Science: Water Research and Technology, 2015, 1, 84-95.	2.4	35
60	Preparation of gold nanoparticles by a novel biodegradable graft copolymer sodium alginate-g-poly (N,N-dimethylacrylamide-co-acrylic acid) with anti micro bacterial application. European Polymer Journal, 2015, 66, 139-148.	5.4	37
61	Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(<i>N</i> -isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS Applied Materials & Drug Release	8.0	117
62	Starch based biodegradable graft copolymer for the preparation of silver nanoparticles. International Journal of Biological Macromolecules, 2015, 81, 83-90.	7.5	16
63	Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl. Applied Surface Science, 2015, 353, 173-183.	6.1	178
64	Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresource Technology, 2015, 191, 291-299.	9.6	102
65	Modified hydroxypropyl methyl cellulose: Efficient matrix for controlled release of 5-amino salicylic acid. International Journal of Biological Macromolecules, 2015, 77, 207-213.	7.5	11
66	Green synthesis, characterization and antibacterial activity of gold nanoparticles using hydroxyethyl starch-g-poly (methylacrylate-co-sodium acrylate): A novel biodegradable graft copolymer. Journal of Molecular Liquids, 2015, 212, 259-265.	4.9	18
67	pH Triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer–natural polymer based nanocomposite. Chemical Communications, 2015, 51, 16057-16060.	4.1	36
68	Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose, 2015, 22, 313-327.	4.9	14
69	Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model. Colloids and Surfaces B: Biointerfaces, 2015, 125, 160-169.	5.0	32
70	Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin. International Journal of Biological Macromolecules, 2015, 72, 171-178.	7.5	50
71	Modified amylopectin based flocculant for the treatment of synthetic effluent and industrial wastewaters. International Journal of Biological Macromolecules, 2015, 72, 356-363.	7.5	13
72	Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid). Carbohydrate Polymers, 2014, 111, 108-115.	10.2	78

#	Article	IF	Citations
73	Rapid adsorptive removal of toxic Pb 2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresource Technology, 2014, 170, 578-582.	9.6	53
74	Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-dihydrofuran for Non-Invasive Imaging. ACS Applied Materials & Interfaces, 2014, 6, 17926-17936.	8.0	21
75	Enhanced Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution Using a Nanocomposite of Hydrolyzed Polyacrylamide Grafted Xanthan Gum and Incorporated Nanosilica. ACS Applied Materials & Interfaces, 2014, 6, 4766-4777.	8.0	462
76	Dextrin crosslinked with poly(lactic acid): A novel hydrogel for controlled drug release application. Journal of Applied Polymer Science, 2014, 131, .	2.6	42
77	Novel biodegradable polymeric flocculants based on cationic polysaccharidesÂÂ. Advanced Materials Letters, 2014, 5, 24-30.	0.6	22
78	Modified tamarind kernel polysaccharide: A novel matrix for control release of aspirin. International Journal of Biological Macromolecules, 2013, 58, 296-300.	7.5	26
79	Hierarchically order porous lotus shaped nano-structured MnO2 through MnCO3: chelate mediated growth and shape dependent improved catalytic activity. Journal of Materials Chemistry A, 2013, 1, 10251.	10.3	66
80	Evaluation of the Flocculation Characteristics of Polyacrylamide Grafted Xanthan Gum/Silica Hybrid Nanocomposite. Industrial & Engineering Chemistry Research, 2013, 52, 9731-9740.	3.7	57
81	Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresource Technology, 2013, 144, 485-491.	9.6	221
82	Amylopectin grafted with poly (acrylic acid): Development and application of a high performance flocculant. Carbohydrate Polymers, 2013, 95, 753-759.	10.2	77
83	Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Advances, 2013, 3, 25340.	3.6	105
84	Acrylic acid grafted guargum–nanosilica membranes for transdermal diclofenac delivery. Carbohydrate Polymers, 2013, 91, 492-501.	10.2	51
85	Amphoteric amylopectin: A novel polymeric flocculant. Carbohydrate Polymers, 2013, 91, 294-299.	10.2	35
86	Hydroxypropyl methyl cellulose grafted with polyacrylamide: Application in controlled release of 5-amino salicylic acid. Colloids and Surfaces B: Biointerfaces, 2013, 110, 236-241.	5.0	27
87	Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: An efficient biodegradable flocculant. Chemical Engineering Journal, 2013, 229, 144-152.	12.7	87
88	Polysaccharide-Based Graft Copolymers for Biomedical Applications. , 2013, , 325-345.		4
89	Synthesis and characterizing a novel polymeric flocculant based on amylopectin-graft-polyacrylamide-graft-polyacrylic acid [(AP-g-PAM)-g-PAA]. Polymer Bulletin, 2012, 69, 545-560.	3.3	15
90	Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: Application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresource Technology, 2012, 119, 181-190.	9.6	142

#	Article	IF	Citations
91	Carboxymethyl Tamarind-g-poly(acrylamide)/Silica: A High Performance Hybrid Nanocomposite for Adsorption of Methylene Blue Dye. Industrial & Engineering Chemistry Research, 2012, 51, 15546-15556.	3.7	126
92	Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 2012, 19, 933-945.	4.9	59
93	Tailoring carboxymethyl guargum hydrogel with nanosilica for sustained transdermal release of diclofenac sodium. Carbohydrate Polymers, 2012, 87, 1532-1538.	10.2	29
94	Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. International Journal of Biological Macromolecules, 2011, 49, 885-893.	7.5	87
95	In-situ silica incorporated carboxymethyl tamarind: Development and application of a novel hybrid nanocomposite. International Journal of Biological Macromolecules, 2011, 49, 1152-1159.	7.5	8
96	Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. Journal of Hazardous Materials, 2011, 192, 1580-1588.	12.4	137
97	High performance polymeric flocculant based on hydrolyzed polyacrylamide grafted tamarind kernel polysaccharide (Hyd. TKP-g-PAM). Bioresource Technology, 2011, 102, 2137-2139.	9.6	13
98	Microwaveâ€initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and characterization. Journal of Applied Polymer Science, 2010, 115, 63-71.	2.6	99
99	Flocculation performance of modified chitosan in an aqueous suspension. Journal of Applied Polymer Science, 2010, 118, 2592-2600.	2.6	21
100	Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide. Bioresource Technology, 2010, 101, 9638-9644.	9.6	109
101	Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—Characterizations and application as matrix for controlled release of 5-amino salicylic acid. International Journal of Biological Macromolecules, 2010, 47, 164-170.	7.5	126
102	Microwave assisted synthesis of polyacrylamide grafted dextrin (Dxt-g-PAM): Development and application of a novel polymeric flocculant. International Journal of Biological Macromolecules, 2010, 47, 623-631.	7.5	53
103	High-technology materials based on modified polysaccharides. Pure and Applied Chemistry, 2009, 81, 525-547.	1.9	63
104	Carboxymethyl guar: Its synthesis and macromolecular characterization. Journal of Applied Polymer Science, 2009, 111, 2630-2636.	2.6	37
105	A novel polymeric biomaterial based on carboxymethylstarch and its application in controlled drug release. Journal of Applied Polymer Science, 2009, 114, 2798-2805.	2.6	29
106	A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydrate Polymers, 2009, 77, 822-831.	10.2	170
107	Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMS-g-PAM): Application as a novel matrix for sustained drug release. International Journal of Biological Macromolecules, 2009, 45, 48-55.	7.5	89
108	Cationic tamarind kernel polysaccharide (Cat TKP): A novel polymeric flocculant for the treatment of textile industry wastewater. International Journal of Biological Macromolecules, 2009, 45, 518-523.	7.5	42

#	Article	IF	CITATIONS
109	Polyacrylamide Grafted Carboxymethyl Tamarind (CMTâ€gâ€PAM): Development and Application of a Novel Polymeric Flocculant. Macromolecular Symposia, 2009, 277, 100-111.	0.7	53
110	Settling rates for flocculation of iron and manganese oreâ€containing suspensions by cationic glycogen. Polymer Engineering and Science, 2008, 48, 1892-1896.	3.1	14
111	Characterization of cationic starch: An efficient flocculating agent. Journal of Applied Polymer Science, 2008, 108, 2674-2681.	2.6	22
112	Carboxymethyl tamarind: Synthesis, characterization and its application as novel drugâ€delivery agent. Journal of Applied Polymer Science, 2008, 110, 392-400.	2.6	73
113	High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohydrate Polymers, 2008, 74, 590-596.	10.2	42
114	Synthesis and characterization of cationic guar gum: A high performance flocculating agent. Journal of Applied Polymer Science, 2007, 105, 3240-3245.	2.6	74
115	A model of flocculation. Materials Letters, 2007, 61, 4381-4384.	2.6	97
116	Synthesis, characterization and flocculation characteristics of cationic glycogen: A novel polymeric flocculant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 193-199.	4.7	65
117	A High Performance Flocculating Agent and Viscosifiers Based On Cationic Guar Gum. Macromolecular Symposia, 2006, 242, 227-234.	0.7	30
118	Investigation On Flocculation Characteristics Of Cationic Polysaccharides: Novel Polymeric Flocculants. Materials Research Innovations, 2005, 9, 55-56.	2.3	3
119	Cationic starch: an effective flocculating agent. Carbohydrate Polymers, 2005, 59, 417-423.	10.2	314