Assocâ€P.rof David Barker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035867/publications.pdf

Version: 2024-02-01

166 papers 2,462 citations

218677 26 h-index 315739 38 g-index

192 all docs

192 docs citations

times ranked

192

3029 citing authors

#	Article	IF	CITATIONS
1	First use of grape waste-derived building blocks to yield antimicrobial materials. Food Chemistry, 2022, 370, 131025.	8.2	2
2	Synthesis of d6-deuterated analogues of aroma molecules- \hat{l}^2 -damascenone, \hat{l}^2 -damascone and safranal. Results in Chemistry, 2022, 4, 100264.	2.0	2
3	Disruption of Crystal Packing in Thieno[2,3-b]pyridines Improves Anti-Proliferative Activity. Molecules, 2022, 27, 836.	3.8	1
4	The enantioselective total syntheses of (+)-7-oxohinokinin, (+)-7-oxoarcitin, (+)-conicaol B and (\hat{a}°) -isopolygamain. Organic and Biomolecular Chemistry, 2022, 20, 4324-4330.	2.8	2
5	Total Asymmetric Synthesis and Stereochemical Confirmation of (+)- and (â^')-Lyoniresinol and Its Deuterated Analogues. Journal of Organic Chemistry, 2022, 87, 4254-4262.	3.2	5
6	Ultra-Highly Sensitive DNA Detection with Conducting Polymer-Modified Electrodes: Mechanism, Manufacture and Prospects for Rapid e-PCR. Journal of the Electrochemical Society, 2022, 169, 037521.	2.9	1
7	Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32880-32889.	8.0	11
8	Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer's Photoluminescent Properties. Polymers, 2022, 14, 2767.	4.5	2
9	Attempts to Create Products with Increased Health-Promoting Potential Starting with Pinot Noir Pomace: Investigations on the Process and Its Methods. Foods, 2022, 11, 1999.	4.3	2
10	Fluorinated O-phenylserine residues enhance the broad-spectrum antimicrobial activity of ultrashort cationic lipopeptides. Journal of Fluorine Chemistry, 2021, 241, 109685.	1.7	6
11	Polymer Brush Functionalization of Polyurethane Tunable Nanopores for Resistive Pulse Sensing. ACS Applied Polymer Materials, 2021, 3, 279-289.	4.4	10
12	An optimised MALDI-TOF assay for phosphatidylcholine-specific phospholipase C. Analytical Methods, 2021, 13, 491-496.	2.7	4
13	Synthesis, Antiproliferative Activity and Radical Scavenging Ability of 5-O-Acyl Derivatives of Quercetin. Molecules, 2021, 26, 1608.	3.8	7
14	Improving the solubility of anti-proliferative thieno [2,3-b] quinoline-2-carboxamides. Bioorganic and Medicinal Chemistry, 2021, 37, 116092.	3.0	3
15	Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncology and Therapy, 2021, 9, 541-556.	2.6	11
16	Thieno[2,3-b]Pyridine Derivative Targets Epithelial, Mesenchymal and Hybrid CD15s+ Breast Cancer Cells. Medicines (Basel, Switzerland), 2021, 8, 32.	1.4	2
17	Syntheses of mono-acylated luteolin derivatives, evaluation of their antiproliferative and radical scavenging activities and implications on their oral bioavailability. Scientific Reports, 2021, 11, 12595.	3.3	16
18	Synthesis and Electrophysiological Testing of Carbonyl Pheromone Analogues for Carposinid Moths. ACS Omega, 2021, 6, 21016-21023.	3.5	0

#	Article	IF	CITATIONS
19	Development of 2-Morpholino-N-hydroxybenzamides as anti-proliferative PC-PLC inhibitors. Bioorganic Chemistry, 2021, 114, 105152.	4.1	9
20	Electroactive Metal Complexes Covalently Attached to Conductive PEDOT Films: A Spectroelectrochemical Study. ACS Applied Materials & Spectroelectroelectrochemical Study. ACS Applied Materials & Spectroelect	8.0	14
21	Incorporation of a Nitric Oxide Donating Motif into Novel PC-PLC Inhibitors Provides Enhanced Anti-Proliferative Activity. International Journal of Molecular Sciences, 2021, 22, 11518.	4.1	1
22	Tethered Aryl Groups Increase the Activity of Anti-Proliferative Thieno [2,3-b] Pyridines by Targeting a Lipophilic Region in the Active Site of PI-PLC. Pharmaceutics, 2021, 13, 2020.	4. 5	6
23	Novel Cell-Penetrating Peptide Conjugated Proteasome Inhibitors: Anticancer and Antifungal Investigations. Journal of Medicinal Chemistry, 2020, 63, 334-348.	6.4	11
24	Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. European Journal of Medicinal Chemistry, 2020, 187, 111919.	5 . 5	10
25	Scalable synthesis of the aroma compounds $d6-\hat{l}^2$ -ionone and $d6-\hat{l}^2$ -cyclocitral for use as internal standards in stable isotope dilution assays. Tetrahedron Letters, 2020, 61, 152642.	1.4	3
26	(7Z)-Tricosene Improves Pheromone Trap Catch of Raspberry Bud Moth, Heterocrossa rubophaga. Journal of Chemical Ecology, 2020, 46, 830-834.	1.8	1
27	Novel Electrochemically Switchable, Flexible, Microporous Cloth that Selectively Captures, Releases, and Concentrates Intact Extracellular Vesicles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39005-39013.	8.0	24
28	Synthesis and Use of Ethyl 6-Acetyloxyhexanoate as an Internal Standard: An Interdisciplinary Experiment for an Undergraduate Chemistry Laboratory. Journal of Chemical Education, 2020, 97, 3847-3851.	2.3	2
29	Synthesis and Biological Testing of Ester Pheromone Analogues for Two Fruitworm Moths (Carposinidae). Journal of Agricultural and Food Chemistry, 2020, 68, 9557-9567.	5.2	6
30	Synthesis and Antibacterial Analysis of Analogues of the Marine Alkaloid Pseudoceratidine. Molecules, 2020, 25, 2713.	3.8	6
31	Fermentation of Sauvignon blanc grape marc extract yields important wine aroma 3-sulfanylhexan-1-ol (3SH). LWT - Food Science and Technology, 2020, 131, 109653.	5.2	5
32	Development, synthesis and biological investigation of a novel class of potent PC-PLC inhibitors. European Journal of Medicinal Chemistry, 2020, 191, 112162.	5 . 5	8
33	Highly stretchable, solution-processable, and crosslinkable poly(3,4-ethylenedioxithiophene)-based conjugated polymers. European Polymer Journal, 2020, 125, 109508.	5.4	7
34	A convenient synthesis of amino acid-derived precursors to the important wine aroma 3-sulfanylhexan-1-ol (3SH). Tetrahedron Letters, 2020, 61, 151663.	1.4	6
35	A novel LC-HRMS method reveals cysteinyl and glutathionyl polysulfides in wine. Talanta, 2020, 218, 121105.	5.5	10
36	Bicyclic 5-6 Systems—Five Heteroatoms 2:3 or 3:2. , 2020, , 565-565.		0

#	Article	IF	CITATIONS
37	Development of Thienopyridines as Potent Antiproliferative Agents. Proceedings (mdpi), 2019, 22, .	0.2	1
38	A new analytical method to measure <i>S</i> â€methylâ€ <scp>I</scp> â€methionine in grape juice reveals the influence of yeast on dimethyl sulfide production during fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 6944-6953.	3.5	10
39	The cytotoxic potential of cationic triangulenes against tumour cells. MedChemComm, 2019, 10, 1881-1891.	3.4	9
40	Iterative synthetic strategies and gene deletant experiments enable the first identification of polysulfides in <i>Saccharomyces cerevisiae</i> . Chemical Communications, 2019, 55, 8868-8871.	4.1	8
41	Lignans. Molecules, 2019, 24, 1424.	3.8	32
42	Stereoselective Synthesis of the Spirocyclic Ring System of the Sesquiterpene Spirolepechinene. Asian Journal of Organic Chemistry, 2019, 8, 462-465.	2.7	1
43	Conjugated polymers and composites for stretchable organic electronics. Journal of Materials Chemistry C, 2019, 7, 5534-5552.	5.5	114
44	Stereoselective Total Synthesis of (+)-Aristolactam GI. Journal of Organic Chemistry, 2019, 84, 5747-5756.	3.2	12
45	Photo-patternable, stretchable and electrically conductive graft copolymers of poly(3-hexylthiophene). Polymer Chemistry, 2019, 10, 6278-6289.	3.9	7
46	Molecular "Building Block―and "Side Chain Engineering― Approach to Synthesis of Multifunctional and Soluble Poly(pyrrole phenylene)s. Macromolecular Rapid Communications, 2019, 40, 1800749.	3.9	5
47	Identification of Floral Volatiles and Pollinator Responses in Kiwifruit Cultivars, Actinidia chinensis var. chinensis. Journal of Chemical Ecology, 2018, 44, 406-415.	1.8	14
48	Synthesis and Absolute Stereochemical Reassignment of Mukanadin F: A Study of Isomerization of Bromopyrrole Alkaloids with Implications on Marine Natural Product Isolation. European Journal of Organic Chemistry, 2018, 2018, 3065-3074.	2.4	5
49	Electrospun Polythiophene Phenylenes for Tissue Engineering. Biomacromolecules, 2018, 19, 1456-1468.	5.4	37
50	Poly(para-phenylene ethynylene) (PPE)- and poly(para-phenylene vinylene) (PPV)-poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) graft copolymers exhibit selective antimicrobial activity. European Polymer Journal, 2018, 98, 368-374.	5.4	8
51	Facile gas chromatography–tandem mass spectrometry stable isotope dilution method for the quantification of sesquiterpenes in grape. Journal of Chromatography A, 2018, 1537, 91-98.	3.7	10
52	Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosensors and Bioelectronics, 2018, 100, 549-555.	10.1	38
53	Thieno[2,3-b]pyridine derivatives are potent anti-platelet drugs, inhibiting platelet activation, aggregation and showing synergy with aspirin. European Journal of Medicinal Chemistry, 2018, 143, 1997-2004.	5.5	27
54	Modular Synthesis and Biological Investigation of 5-Hydroxymethyl Dibenzyl Butyrolactones and Related Lignans. Molecules, 2018, 23, 3057.	3.8	9

#	Article	IF	Citations
55	1,4-Benzodioxane Lignans: An Efficient, Asymmetric Synthesis of Flavonolignans and Study of Neolignan Cytotoxicity and Antiviral Profiles. Journal of Natural Products, 2018, 81, 2630-2637.	3.0	14
56	Long side-chain grafting imparts intrinsic adhesiveness to poly(thiophene phenylene) conjugated polymer. European Polymer Journal, 2018, 109, 237-247.	5.4	7
57	Alaninyl variants of the marine natural product halocyamine A and their antibacterial properties. Tetrahedron, 2018, 74, 6929-6938.	1.9	1
58	Polyâ€ <i>p</i> â€phenylenevinyleneâ€ <i>g</i> â€poly(2â€(methacryloyloxy)Ethyl)trimethylammonium chloride (PPVâ€gâ€PMETAC): A fluorescent, waterâ€soluble, selective anion sensor. Journal of Polymer Science Part A, 2018, 56, 1997-2003.	2.3	5
59	Chain shape and thin film behaviour of poly(thiophene)- <i>graft</i> -poly(acrylate urethane). Soft Matter, 2018, 14, 6875-6882.	2.7	4
60	Investigation into Improving the Aqueous Solubility of the Thieno [2,3-b] pyridine Anti-Proliferative Agents. Molecules, 2018, 23, 145.	3.8	15
61	Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene) Tj ETQq1 1 (23433-23441.).784314 3.6	rgBT /Overlo 2
62	Molecular Approach to Conjugated Polymers with Biomimetic Properties. Accounts of Chemical Research, 2018, 51, 1581-1589.	15.6	57
63	Self-healing polythiophene phenylenes for stretchable electronics. European Polymer Journal, 2018, 105, 331-338.	5.4	18
64	Synthesis of Benzodioxane and Benzofuran Scaffolds Found in Neolignans via TMS Triflate Mediated Addition to 1,4-BenzoÂdioxane Hemiacetals. Synthesis, 2017, 49, 1190-1205.	2.3	3
65	Synthesis of grafted poly(p- phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. European Polymer Journal, 2017, 89, 263-271.	5.4	11
66	Synthesis of N -benzyl-des- D -ring lamellarin K via an acyl-Claisen/Paal-Knorr approach. Tetrahedron, 2017, 73, 1881-1894.	1.9	13
67	Efficient Total Synthesis of (±)-Isoguaiacin and (±)-Isogalbulin. Synlett, 2017, 28, 1449-1452.	1.8	7
68	Total Synthesis of Ovafolininsâ€A and B: Unique Polycyclic Benzoxepin Lignans through a Cascade Cyclization. Angewandte Chemie - International Edition, 2017, 56, 9483-9486.	13.8	19
69	Structure-activity relationship studies on thiaplidiaquinones A and B as novel inhibitors of Plasmodium falciparum and farnesyltransferase. Bioorganic and Medicinal Chemistry, 2017, 25, 4433-4443.	3.0	7
70	Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor. Polymer Chemistry, 2017, 8, 4352-4358.	3.9	31
71	Total Synthesis of Ovafolininsâ€A and B: Unique Polycyclic Benzoxepin Lignans through a Cascade Cyclization. Angewandte Chemie, 2017, 129, 9611-9614.	2.0	0
72	New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing. Biosensors and Bioelectronics, 2017, 97, 128-135.	10.1	22

#	Article	IF	CITATIONS
73	Identification of in situ flower volatiles from kiwifruit (Actinidia chinensis var. deliciosa) cultivars and their male pollenisers in a New Zealand orchard. Phytochemistry, 2017, 141, 61-69.	2.9	10
74	Synthesis and antiproliferative activity of 2-chlorophenyl carboxamide thienopyridines. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 135-138.	2.2	13
75	Molecularly Engineered Intrinsically Healable and Stretchable Conducting Polymers. Chemistry of Materials, 2017, 29, 8850-8858.	6.7	49
76	Total Synthesis of (â^')-Bicubebin A, B, (+)-Bicubebin C and Structural Reassignment of (â^')- <i>cis</i> -Cubebin. Organic Letters, 2017, 19, 5368-5371.	4.6	13
77	Synthesis and biological evaluation of the ascidian blood-pigment halocyamine A. Organic and Biomolecular Chemistry, 2017, 15, 6194-6204.	2.8	6
78	Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3- b]pyridine anticancer compound. Drug Design, Development and Therapy, 2017, Volume11, 759-769.	4.3	11
79	GPCR Modulation of Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules, 2017, 22, 2254.	3.8	12
80	Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. Polymers, 2016, 8, 365.	4.5	6
81	Polymer electronic composites that heal by solvent vapour. RSC Advances, 2016, 6, 98466-98474.	3.6	10
82	Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3001-3005.	2.2	34
83	Convenient synthesis of deuterium labelled sesquiterpenes. Tetrahedron Letters, 2016, 57, 4496-4499.	1.4	12
84	Synthesis of 3-Amino-2-carboxamide Tetrahydropyrrolo[2,3-b]quinolines. Synlett, 2016, 27, 2811-2814.	1.8	7
85	Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. European Polymer Journal, 2016, 84, 355-365.	5.4	14
86	Optimization of Ecofriendly Extraction of Bioactive Monomeric Phenolics and Useful Flavor Precursors from Grape Waste. ACS Sustainable Chemistry and Engineering, 2016, 4, 5060-5067.	6.7	17
87	Enantioselective Synthesis of 2,3-Disubstituted Benzomorpholines: Analogues of Lignan Natural Products. Journal of Organic Chemistry, 2016, 81, 12012-12022.	3.2	13
88	An acyl-Claisen/Paal-Knorr approach to fully substituted pyrroles. Tetrahedron, 2016, 72, 4676-4689.	1.9	17
89	Discovery and preliminary structure–activity relationship studies on tecomaquinone I and tectol as novel farnesyltransferase and plasmodial inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3102-3107.	3.0	9
90	Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno [2,3-b] pyridine derivative. Cancer Cell International, 2016, 16, 18.	4.1	27

#	Article	IF	CITATIONS
91	Synthesis and cytotoxicity of thieno[2,3-b]quinoline-2-carboxamide and cycloalkyl[b]thieno[3,2-e]pyridine-2-carboxamide derivatives. Bioorganic and Medicinal Chemistry, 2016, 24, 1142-1154.	3.0	19
92	Bioinspired Syntheses of the Pyridoacridine Marine Alkaloids Demethyldeoxyamphimedine, Deoxyamphimedine, and Amphimedine. Journal of Organic Chemistry, 2016, 81, 282-289.	3.2	28
93	Enantioselective synthesis of BE ring analogues of methyllycaconitine. Tetrahedron, 2016, 72, 400-414.	1.9	7
94	Synthesis and biological activity of benzamide DNA minor groove binders. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 804-808.	2.2	4
95	Total synthesis of panicein A2. Beilstein Journal of Organic Chemistry, 2015, 11, 1991-1996.	2.2	2
96	Synthesis of the furo $[2,3-\langle i\rangle b\langle i\rangle]$ chromene ring system of hyperaspindols A and B. Beilstein Journal of Organic Chemistry, 2015, 11, 265-270.	2.2	10
97	â€~Switch-on' DNA sensor based on poly (<i>p</i> -phenylene vinylenes) bound tentacle probes. Pure and Applied Chemistry, 2015, 87, 707-715.	1.9	2
98	Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B. Marine Drugs, 2015, 13, 5102-5110.	4.6	13
99	Studies towards development of asymmetric double-Mannich reactions of chiral 2-oxocyclohexanecarboxylate derivatives with bis(aminol)ethers. Tetrahedron, 2015, 71, 2210-2221.	1.9	8
100	Synthesis of 3-Methylobovatol. Synlett, 2015, 26, 2425-2428.	1.8	9
101	Enantioselective Synthesis, Stereochemical Correction, and Biological Investigation of the Rodgersinine Family of 1,4-Benzodioxane Neolignans. Organic Letters, 2015, 17, 1046-1049.	4.6	21
102	Bio-inspired dimerisation of prenylated quinones directed towards the synthesis of the meroterpenoid natural products, the scabellones. Tetrahedron Letters, 2015, 56, 1486-1488.	1.4	11
103	Synthesis of alkyl sulfonic acid aldehydes and alcohols, putative precursors to important wine aroma thiols. Tetrahedron Letters, 2015, 56, 1728-1731.	1.4	14
104	Synthesis of various lignans via the rearrangements of 1,4-diarylbutane-1,4-diols. Tetrahedron Letters, 2015, 56, 4549-4553.	1.4	25
105	Synthesis and biology of 1,4-benzodioxane lignan natural products. Natural Product Reports, 2015, 32, 1369-1388.	10.3	41
106	A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. MedChemComm, 2015, 6, 1987-1997.	3.4	39
107	Synthesis of aza-derivatives of tetrahydrofuran lignan natural products. Tetrahedron, 2015, 71, 9439-9456.	1.9	13
108	Synthesis of tunichrome Sp-1. Tetrahedron Letters, 2015, 56, 5604-5606.	1.4	2

#	Article	IF	Citations
109	Highly functionalisable polythiophene phenylenes. Polymer Chemistry, 2015, 6, 7618-7629.	3.9	29
110	Using NMR to determine the relative stereochemistry of 7,7-diaryl-8,8′-dimethylbutan-1-ol lignans. Phytochemistry Letters, 2015, 14, 138-142.	1.2	6
111	Total Synthesis of (–)″soamericanin A and (+)″soamericanol A. European Journal of Organic Chemistry, 2014, 2014, 1037-1046.	2.4	19
112	The effect of a thieno [2,3-b] pyridine PLC- $\hat{1}^3$ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. MedChemComm, 2014, 5, 99-106.	3.4	36
113	The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. MedChemComm, 2014, 5, 186.	3.4	22
114	Synthesis and cytotoxicity of thieno [2,3-b] pyridine and furo [2,3-b] pyridine derivatives. European Journal of Medicinal Chemistry, 2014, 86, 420-437.	5. 5	56
115	Studies towards a switch-off optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads. International Journal of Nanotechnology, 2014, 11, 645.	0.2	0
116	Rapid synthesis of indole cis-enamides via hydroamidation of indolic alkynes. Tetrahedron Letters, 2013, 54, 5239-5242.	1.4	15
117	Ethyl propiolate derivatisation for the analysis of varietal thiols in wine. Journal of Chromatography A, 2013, 1312, 104-110.	3.7	49
118	Total Synthesis of <i>ent</i> â€Hyperioneâ€A and <i>ent</i> â€Hyperioneâ€B. Asian Journal of Organic Chemistry, 2013, 2, 491-493.	2.7	9
119	Asymmetric synthesis and anti-protozoal activity of the $8,4\hat{a}\in^2$ -oxyneolignans virolin, surinamensin and analogues. European Journal of Medicinal Chemistry, 2013, 60, 240-248.	5.5	20
120	Unexpected O-alkylation and ester migration in phenolic 2,3-diaryl-2,3-dihydrobenzo[b]furans. Tetrahedron Letters, 2013, 54, 2093-2096.	1.4	9
121	Water-soluble anionic poly(p-phenylene vinylenes) with high luminescence. Polymer Chemistry, 2013, 4, 2506.	3.9	22
122	Synthesis of Hemitectol, Tectol, and Tecomaquinone I. Synlett, 2012, 23, 2939-2942.	1.8	4
123	A Divergent Approach to 3-Piperidinols: A Concise Syntheses of (+)-Swainsonine and Access to the 1-Substituted Quinolizidine Skeleton. Journal of Organic Chemistry, 2012, 77, 7968-7980.	3.2	43
124	Biomimetic Synthesis of Thiaplidiaquinones A and B. Journal of Natural Products, 2012, 75, 2256-2260.	3.0	18
125	Chemistry of DNA minor groove binding agents. Journal of Photochemistry and Photobiology B: Biology, 2012, 115, 105-118.	3.8	104
126	A tandem Diels–Alder/Mannich approach to the synthesis of AE and ABE ring analogues of Delphinium alkaloids. Tetrahedron, 2012, 68, 5759-5778.	1.9	19

#	Article	IF	CITATIONS
127	Asymmetric Synthesis and CD Investigation of the 1,4-Benzodioxane Lignans Eusiderins A, B, C, G, L, and M. Journal of Organic Chemistry, 2012, 77, 8156-8166.	3.2	39
128	An acyl-Claisen approach to the synthesis of lignans and substituted pyrroles. Pure and Applied Chemistry, 2012, 84, 1557-1565.	1.9	15
129	Switch on or switch off: An optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads. Biosensors and Bioelectronics, 2012, 35, 498-502.	10.1	24
130	An efficient synthesis of 3-alkyl-1,5,3-dioxazepanes and their use as electrophiles in double-Mannich reactions. Tetrahedron, 2012, 68, 1017-1028.	1.9	22
131	Synthesis of benzoic acids and polybenzamides containing tertiary alkylamino functionality. Tetrahedron, 2012, 68, 1790-1801.	1.9	8
132	Synthesis of 2,3-syn-diarylpent-4-enamides via acyl-Claisen rearrangements of substituted cinnamyl morpholines: application to the synthesis of magnosalicin. Tetrahedron Letters, 2012, 53, 4464-4468.	1.4	15
133	Anti-inflammatory and Antimalarial Meroterpenoids from the New Zealand AscidianAplidium scabellum. Journal of Organic Chemistry, 2011, 76, 9151-9156.	3.2	44
134	Asymmetric Synthesis of (+)-Galbelgin, (â^')-Kadangustin J, (â^')-Cyclogalgravin and (â^')-Pycnanthulignenes A and B, Three Structurally Distinct Lignan Classes, Using a Common Chiral Precursor. Journal of Organic Chemistry, 2011, 76, 6636-6648.	3.2	63
135	The enantioselective synthesis of tetracyclic methyllycaconitine analogues. Tetrahedron, 2011, 67, 7989-7999.	1.9	26
136	A double Mannich approach to the synthesis of substituted piperidonesâ€"application to the synthesis of substituted E-ring analogues of methyllycaconitine. Tetrahedron, 2010, 66, 7179-7191.	1.9	13
137	Stereoselective Synthesis of 4-Substituted 4-Hydroxypiperidines via Epoxidation-Ring Opening of 4-Methylenepiperidines. Synlett, 2010, 2010, 2631-2635.	1.8	2
138	An Acyl-Claisen Approach to Tetrasubstituted Tetrahydrofuran Lignans: Synthesis of Fragransin A2, Talaumidin, and Lignan Analogues. Synlett, 2009, 2009, 3315-3319.	1.8	21
139	Synthesis of AE and BE Ring Analogues of the Alkaloid Methyllycaconitine. European Journal of Organic Chemistry, 2009, 2009, 1944-1960.	2.4	16
140	Influence of \hat{l} ±-methyl substitution of proline-based organocatalysts on the asymmetric \hat{l} ±-oxidation of aldehydes. Tetrahedron, 2009, 65, 4801-4807.	1.9	15
141	¹ H and ¹³ C NMR spectra of Câ€6 and Câ€9 substituted 3â€azabicyclco[3.3.1]nonanes Magnetic Resonance in Chemistry, 2008, 46, 75-79.	5. 1.9	2
142	Use of (<i>S</i>)â€5â€(2â€Methylpyrrolidinâ€2â€yl)â€1 <i>H</i> â0€tetrazole as a Novel and Enantioselective Organocatalyst for the Aldol Reaction. European Journal of Organic Chemistry, 2008, 2008, 164-170.	2.4	34
143	Synthesis of non-symmetrical 3,5-diamidobenzyl amines, ethers and sulfides. Tetrahedron Letters, 2008, 49, 1660-1664.	1.4	8
144	N-[3-(tert-Butyldimethylsiloxymethyl)-5-nitrophenyl]acetamide. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2031-o2031.	0.2	0

#	Article	IF	CITATIONS
145	3,5-Dinitrobenzyl methanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1470-o1470.	0.2	1
146	Diastereoselective Synthesis of Substituted 4-Piperidones and 4-Piperidols Using a Double Mannich Reaction. Synlett, 2008, 2008, 2601-2604.	1.8	1
147	$(\hat{A}\pm)$ -Cyclohexane-1,2-diyl bis(4-nitrobenzoate). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2174-o2174.	0.2	O
148	2,2′-(3,5-Dinitrobenzylimino)diethanol. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1253-o1253.	0.2	2
149	N-{3-[Bis(2-hydroxyethyl)aminomethyl]-5-nitrophenyl}benzamide. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o978-o979.	0.2	0
150	$(\hat{A}\pm)$ -N-(3-Hydroxy-1,2-diphenylpropyl)-4-methylbenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1990-o1990.	0.2	0
151	1H and 13C NMR spectra of methylmaleimido- and methylsuccinimidoanthranilate esters of 1-hydroxymethyl-6-methoxy-3-azabicyclo [3.3.1] nonanes. Magnetic Resonance in Chemistry, 2007, 45, 695-699.	1.9	3
152	N-(3-Hydroxymethyl-5-nitrophenyl)acetamide dimethyl sulfoxide solvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 03983-03983.	0.2	1
153	3-Acetamido-5-nitrobenzyl acetate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3984-o3984.	0.2	1
154	A concise synthesis of $(\hat{A}\pm)$ and a total synthesis of $(+)$ -epiquinamide. Tetrahedron Letters, 2006, 47, 5017-5020.	1.4	29
155	Synthesis ofN-(3-Phenylpropyl)-Substituted Tricyclic ABE Ring Analogues of the Alkaloid Methyllycaconitine. European Journal of Organic Chemistry, 2006, 2006, 3205-3215.	2.4	10
156	1H and 13C NMR data for C-6 substituted 3-azabicyclo [3.3.1] nonane-1-carboxylates. Magnetic Resonance in Chemistry, 2006, 44, 980-983.	1.9	10
157	Methyllycaconitine analogues have mixed antagonist effects at nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2005, 13, 4565-4575.	3.0	61
158	A Review of Advances in the Synthesis of Analogues of the Delphinium ÂAlkaloid Methyllycaconitine. Synlett, 2005, 2005, 1809-1827.	1.8	6
159	Synthesis of simple analogues of methyllycaconitine—an efficient method for the preparation of the N-substituted anthranilate pharmacophore. Tetrahedron, 2004, 60, 5953-5963.	1.9	21
160	Synthesis of tricyclic analogues of methyllycaconitine using ring closing metathesis to append a B ring to an AE azabicyclic fragment. Organic and Biomolecular Chemistry, 2004, 2, 1659.	2.8	27
161	Addition of silyloxydienes to 2,6-dibromo-1,4-benzoquinone: an approach to highly oxygenated bromonaphthoquinones for the synthesis of thysanone. Tetrahedron, 2003, 59, 2441-2449.	1.9	27
162	A Convenient Synthesis of 2-(3-Methyl-2,5-dioxopyrrolidin-1-yl)benzoic Acid. Synthesis, 2003, 2003, 0656-0658.	2.3	1

#	Article	IF	CITATIONS
163	Synthesis of ABE tricyclic analogues of methyllycaconitine using a Wacker oxidation–aldol strategy to append the B ring to the AE fragment. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 924-931.	1.3	22
164	Application of olefin metathesis to the synthesis of ABE ring analogues of methyllycaconitine. Tetrahedron Letters, 2002, 43, 6019-6022.	1.4	19
165	A high yielding synthesis of anthranilate esters from sterically hindered alcohols. Tetrahedron Letters, 2001, 42, 1785-1788.	1.4	22
166	A Novel Electrochemically Switchable Conductive Polymer Interface for Controlled Capture and Release of Chemical and Biological Entities. Advanced Materials Interfaces, 0, , 2102475.	3.7	4