
Mohammad H A Ibrahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metabolic Engineering, 2016, 35, 55-63.	3.6	210
2	Poly(3-Hydroxybutyrate) Production from Glycerol by <i>Zobellella denitrificans</i> MW1 via High-Cell-Density Fed-Batch Fermentation and Simplified Solvent Extraction. Applied and Environmental Microbiology, 2009, 75, 6222-6231.	1.4	136
3	Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. Journal of Applied Microbiology, 2010, 108, 214-225.	1.4	82
4	High-Cell-Density Cyclic Fed-Batch Fermentation of a Poly(3-Hydroxybutyrate)-Accumulating Thermophile, <i>Chelatococcus</i> sp. Strain MW10. Applied and Environmental Microbiology, 2010, 76, 7890-7895.	1.4	69
5	Improved propionic acid production from glycerol: Combining cyclic batch- and sequential batch fermentations with optimal nutrient composition. Bioresource Technology, 2015, 176, 80-87.	4.8	35
6	Structural characterization, catalytic, kinetic and thermodynamic properties of Keratinase from Bacillus pumilus FH9. International Journal of Biological Macromolecules, 2017, 105, 973-980.	3.6	31
7	Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. Journal of Applied Microbiology, 2010, 109, no-no.	1.4	23
8	Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin. International Journal of Biological Macromolecules, 2016, 85, 238-245.	3.6	19
9	Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express, 2013, 3, 38.	1.4	18
10	Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. Bioresource Technology, 2015, 180, 172-176.	4.8	14
11	Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study. AMB Express, 2016, 6, 39.	1.4	9
12	Draft Genome Sequence of Bacillus subtilis Ia1a, a New Strain for Poly-Î ³ -Glutamic Acid and Exopolysaccharide Production. Genome Announcements, 2016, 4, .	0.8	0