Stefan Pfeffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/403565/publications.pdf

Version: 2024-02-01

44 3,395 27
papers citations h-index

53 53 53 3674 all docs docs citations times ranked citing authors

43

g-index

#	Article	IF	CITATIONS
1	Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.	6.0	493
2	mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell, 2018, 174, 338-349.e20.	13.5	330
3	PyTom: A python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. Journal of Structural Biology, 2012, 178, 177-188.	1.3	202
4	Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science, 2018, 360, 215-219.	6.0	177
5	Structure of the native Sec61 protein-conducting channel. Nature Communications, 2015, 6, 8403.	5.8	169
6	A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 2019, 16, 757-762.	9.0	165
7	Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 2017, 8, 14516.	5.8	131
8	Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Communications, 2014, 5, 3072.	5.8	127
9	An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Frontiers in Physiology, 2017, 8, 887.	1.3	117
10	Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nature Communications, 2015, 6, 6019.	5.8	115
11	Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants, 2019, 5, 436-446.	4.7	114
12	Insights into the assembly and activation of the microtubule nucleator \hat{l}^3 -TuRC. Nature, 2020, 578, 467-471.	13.7	106
13	Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 2021, 18, 1386-1394.	9.0	84
14	Structure and 3D Arrangement of Endoplasmic Reticulum Membrane-Associated Ribosomes. Structure, 2012, 20, 1508-1518.	1.6	79
15	Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography. Structure, 2017, 25, 1574-1581.e2.	1.6	73
16	Protein Transport into the Human Endoplasmic Reticulum. Journal of Molecular Biology, 2015, 427, 1159-1175.	2.0	71
17	Subtomogram analysis using the Volta phase plate. Journal of Structural Biology, 2017, 197, 94-101.	1.3	71
18	Fast and accurate reference-free alignment of subtomograms. Journal of Structural Biology, 2013, 182, 235-245.	1.3	70

#	Article	IF	Citations
19	Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nature Communications, 2018, 9, 3765.	5.8	68
20	Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). Journal of Allergy and Clinical Immunology, 2018, 141, 1427-1438.	1.5	63
21	Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nature Methods, 2020, 17, 209-216.	9.0	60
22	Ribosome-associated quality-control mechanisms from bacteria to humans. Molecular Cell, 2022, 82, 1451-1466.	4.5	58
23	Unravelling molecular complexity in structural cell biology. Current Opinion in Structural Biology, 2018, 52, 111-118.	2.6	54
24	Microtubule nucleation: The waltz between Î ³ -tubulin ring complexÂand associated proteins. Current Opinion in Cell Biology, 2021, 68, 124-131.	2.6	45
25	Autofocused 3D Classification of Cryoelectron Subtomograms. Structure, 2014, 22, 1528-1537.	1.6	43
26	Organization of the native ribosome–translocon complex at the mammalian endoplasmic reticulum membrane. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2122-2129.	1,1	40
27	MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nature Communications, 2020, 11, 776.	5.8	36
28	Mimicry of Canonical Translation Elongation Underlies Alanine Tail Synthesis in RQC. Molecular Cell, 2021, 81, 104-114.e6.	4.5	30
29	Bacterial ribosome collision sensing by a MutS DNA repair ATPase paralogue. Nature, 2022, 603, 509-514.	13.7	27
30	How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications, 2021, 12, 7176.	5.8	27
31	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	3.3	21
32	The structure of the \hat{I}^3 -TuRC: a 25-years-old molecular puzzle. Current Opinion in Structural Biology, 2021, 66, 15-21.	2.6	20
33	Modular assembly of the principal microtubule nucleator \hat{I}^3 -TuRC. Nature Communications, 2022, 13, 473.	5.8	18
34	Functions and Mechanisms of the Human Ribosome-Translocon Complex. Sub-Cellular Biochemistry, 2019, 93, 83-141.	1.0	15
35	TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Channels, 2020, 14, 28-44.	1.5	13
36	Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines. , 2012, , .		11

#	Article	IF	CITATIONS
37	Reconstitution of the recombinant human γ-tubulin ring complex. Open Biology, 2021, 11, 200325.	1.5	11
38	The gammaâ€ŧubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. BioEssays, 2021, 43, e2100114.	1.2	8
39	The cryo-EM structure of a \hat{l}^3 -TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Nature Communications, 2020, 11 , 5705.	5.8	7
40	Sec61: A static framework for membrane-protein insertion. Channels, 2016, 10, 167-169.	1.5	5
41	Cryo-FIB Lamella Milling: A Comprehensive Technique to Prepare Samples of Both Plunge- and High-pressure Frozen-hydrated Specimens for in situ Studies Microscopy and Microanalysis, 2018, 24, 820-821.	0.2	5
42	Structural Biology in Situ Using Cryo-Electron Subtomogram Analysis. Biological and Medical Physics Series, 2018, , 237-259.	0.3	3
43	Automated detection of polysomes in cryoelectron tomography. , 2014, , .		1
44	Towards High Resolution in Cryo-Electron Tomography Subtomogram Analysis. Microscopy and Microanalysis, 2017, 23, 812-813.	0.2	1