
Yanren Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035552/publications.pdf Version: 2024-02-01

VANDEN HOU

#	Article	IF	CITATIONS
1	Error estimates for the Scalar Auxiliary Variable (SAV) schemes to the modified phase field crystal equation. Journal of Computational and Applied Mathematics, 2023, 417, 114579.	2.0	4
2	Semirobust analysis of an H(div)-conforming DG method with semi-implicit time-marching for the evolutionary incompressible Navier–Stokes equations. IMA Journal of Numerical Analysis, 2022, 42, 1568-1597.	2.9	5
3	Influence of magnetohydrodynamics and heat transfer on the reverse roll coating of a Jeffrey fluid: A theoretical study. Journal of Plastic Film and Sheeting, 2022, 38, 72-104.	2.2	5
4	Efficient unconditionally stable numerical schemes for a modified phase field crystal model with a strong nonlinear vacancy potential. Numerical Methods for Partial Differential Equations, 2022, 38, 65-101.	3.6	3
5	Error estimate of a stabilized second-order linear predictor–corrector scheme for the Swift–Hohenberg equation. Applied Mathematics Letters, 2022, 127, 107836.	2.7	5
6	Numerical analysis of two-grid decoupling finite element scheme for Navier-Stokes/Darcy model. Computers and Mathematics With Applications, 2022, 113, 45-51.	2.7	0
7	A Theoretical Study of Reverse Roll Coating for a Non-Isothermal Third-Grade Fluid under Lubrication Approximation Theory. Mathematical Problems in Engineering, 2022, 2022, 1-18.	1.1	3
8	An unconditionally energy-stable linear Crank-Nicolson scheme for the Swift-Hohenberg equation. Applied Numerical Mathematics, 2022, 181, 46-58.	2.1	5
9	A second-order decoupled algorithm with different subdomain time steps for the non-stationary Stokes/Darcy model. Numerical Algorithms, 2021, 88, 1137-1182.	1.9	2
10	An equal-order hybridized discontinuous Galerkin method with a small pressure penalty parameter for the Stokes equations. Computers and Mathematics With Applications, 2021, 93, 58-65.	2.7	2
11	Robust error analysis of H(div)-conforming DG method for the time-dependent incompressible Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2021, 390, 113365.	2.0	7
12	A Second Order Energy Stable BDF Numerical Scheme for the Swift–Hohenberg Equation. Journal of Scientific Computing, 2021, 88, 1.	2.3	11
13	An embedded discontinuous Galerkin method for the Oseen equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 2349-2364.	1.9	1
14	Analysis of the local and parallel space-time algorithm for the heat equation. Computers and Mathematics With Applications, 2021, 100, 167-181.	2.7	1
15	A variable time-stepping algorithm for the unsteady Stokes/Darcy model. Journal of Computational and Applied Mathematics, 2021, 394, 113521.	2.0	7
16	A linearly second-order, unconditionally energy stable scheme and its error estimates for the modified phase field crystal equation. Computers and Mathematics With Applications, 2021, 103, 104-126.	2.7	9
17	Analysis of the parareal method with spectral deferred correction method for the Stokes/Darcy equations. Applied Mathematics and Computation, 2020, 387, 124625.	2.2	3
18	Numerical analysis of two grad–div stabilization methods for the time-dependent Stokes/Darcy model. Computers and Mathematics With Applications, 2020, 79, 817-832.	2.7	14

#	Article	IF	CITATIONS
19	A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numerical Algorithms, 2020, 84, 1019-1048.	1.9	9
20	Numerical analysis of a second order algorithm for a non-stationary Navier–Stokes/Darcy model. Journal of Computational and Applied Mathematics, 2020, 369, 112579.	2.0	5
21	New approach to prove the stability of a decoupled algorithm for a fluid–fluid interaction problem. Journal of Computational and Applied Mathematics, 2020, 371, 112695.	2.0	3
22	Theoretical Study of the Reverse Roll Coating of Non-Isothermal Magnetohydrodynamics Viscoplastic Fluid. Coatings, 2020, 10, 940.	2.6	14
23	Mathematical Analysis of Pseudoplastic Polymers during Reverse Roll-Coating. Polymers, 2020, 12, 2285.	4.5	14
24	Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes–Darcy system. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112923.	6.6	13
25	Well-Posedness and Finite Element Approximation for the Convection Model in Superposed Fluid and Porous Layers. SIAM Journal on Numerical Analysis, 2020, 58, 541-564.	2.3	9
26	Error estimates of a second-order decoupled scheme for the evolutionary Stokes-Darcy system. Applied Numerical Mathematics, 2020, 154, 129-148.	2.1	4
27	On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions. Mathematische Zeitschrift, 2019, 291, 47-54.	0.9	4
28	The time filter for the non-stationary coupled Stokes/Darcy model. Applied Numerical Mathematics, 2019, 146, 260-275.	2.1	12
29	A linearly second-order energy stable scheme for the phase field crystal model. Applied Numerical Mathematics, 2019, 140, 134-164.	2.1	19
30	On the solution of coupled Stokes/Darcy model with Beavers–Joseph interface condition. Computers and Mathematics With Applications, 2019, 77, 50-65.	2.7	21
31	Optimal error estimates of both coupled and two-grid decoupled methods for a mixed Stokes–Stokes model. Applied Numerical Mathematics, 2018, 133, 116-129.	2.1	8
32	A secondâ€order partitioned method with different subdomain time steps for the evolutionary Stokesâ€Đarcy system. Mathematical Methods in the Applied Sciences, 2018, 41, 2178-2208.	2.3	23
33	A stabilized finite volume method for the evolutionary Stokes–Darcy system. Computers and Mathematics With Applications, 2018, 75, 596-613.	2.7	7
34	Error estimates of a decoupled algorithm for a fluid–fluid interaction problem. Journal of Computational and Applied Mathematics, 2018, 333, 266-291.	2.0	7
35	Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy Model. Acta Mathematica Scientia, 2018, 38, 1361-1369.	1.0	17
36	Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics. Numerical Methods for Partial Differential Equations, 2017, 33, 1513-1539.	3.6	16

#	Article	IF	CITATIONS
37	Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows. Advances in Computational Mathematics, 2017, 43, 823-848.	1.6	12
38	A parallel partition of unity method for the unsteady Stokes equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2105-2114.	2.8	1
39	A partitioned secondâ€order method for magnetohydrodynamic flows at small magnetic reynolds numbers. Numerical Methods for Partial Differential Equations, 2017, 33, 1966-1986.	3.6	6
40	Twoâ€level consistent splitting methods based on three corrections for the timeâ€dependent Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2016, 80, 429-450.	1.6	9
41	An expandable local and parallel two-grid finite element scheme. Computers and Mathematics With Applications, 2016, 71, 2541-2556.	2.7	17
42	Two-level methods for the Cahn–Hilliard equation. Mathematics and Computers in Simulation, 2016, 126, 89-103.	4.4	9
43	Stability and Convergence Analysis of a Decoupled Algorithm for a Fluid-Fluid Interaction Problem. SIAM Journal on Numerical Analysis, 2016, 54, 2833-2867.	2.3	25
44	A two-level consistent splitting scheme for the navier-stokes equations. Computers and Fluids, 2016, 140, 167-174.	2.5	4
45	Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes–Darcy model. Applied Mathematics Letters, 2016, 57, 90-96.	2.7	56
46	The application of dimension split method in the threeâ€dimensional heat equation. Mathematical Methods in the Applied Sciences, 2016, 39, 3506-3515.	2.3	0
47	A modified local and parallel finite element method for the mixed Stokes–Darcy model. Journal of Mathematical Analysis and Applications, 2016, 435, 1129-1145.	1.0	27
48	New local and parallel finite element algorithm based on the partition of unity. Journal of Mathematical Analysis and Applications, 2016, 435, 1-19.	1.0	25
49	Modified intrinsic extended finite element method for elliptic equation with interfaces. Journal of Engineering Mathematics, 2016, 97, 147-159.	1.2	2
50	Local and parallel finite element methods for the mixed Navier–Stokes/Darcy model. International Journal of Computer Mathematics, 2016, 93, 1155-1172.	1.8	16
51	A parallel partition of unity method for the time-dependent convection-diffusion equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1947-1956.	2.8	7
52	The stable extrinsic extended finite element method for second order elliptic equation with interfaces. Advances in Difference Equations, 2015, 2015, .	3.5	1
53	Numerical analysis of the Crank–Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows. Numerical Methods for Partial Differential Equations, 2015, 31, 2169-2208.	3.6	29
54	Numerical analysis for the mixed <scp>N</scp> avier– <scp>S</scp> tokes and <scp>D</scp> arcy Problem with the <scp>B</scp> eavers– <scp>J</scp> oseph interface condition. Numerical Methods for Partial Differential Equations, 2015, 31, 1009-1030.	3.6	27

#	Article	IF	CITATIONS
55	A two-grid decoupling method for the mixed Stokes–Darcy model. Journal of Computational and Applied Mathematics, 2015, 275, 139-147.	2.0	32
56	The partition of unity parallel finite element algorithm. Advances in Computational Mathematics, 2015, 41, 937-951.	1.6	20
57	Uniform attractors for three-dimensional Navier–Stokes equations with nonlinear damping. Journal of Mathematical Analysis and Applications, 2015, 422, 337-351.	1.0	25
58	Determining an obstacle by far-field data measured at a few spots. Inverse Problems and Imaging, 2015, 9, 591-600.	1.1	1
59	A New Iterative Method for Linear Systems from XFEM. Mathematical Problems in Engineering, 2014, 2014, 1-8.	1.1	1
60	The Crank-Nicolson Extrapolation Stabilized Finite Element Method for Natural Convection Problem. Mathematical Problems in Engineering, 2014, 2014, 1-22.	1.1	0
61	Adaptive dimension splitting algorithm for three-dimensional elliptic equations. International Journal of Computer Mathematics, 2014, 91, 2535-2553.	1.8	1
62	A decoupling twoâ€grid algorithm for the mixed Stokesâ€Darcy model with the Beaversâ€Joseph interface condition. Numerical Methods for Partial Differential Equations, 2014, 30, 1066-1082.	3.6	36
63	A finite element variational multiscale method for steadyâ€state natural convection problem based on two local gauss integrations. Numerical Methods for Partial Differential Equations, 2014, 30, 361-375.	3.6	19
64	Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Computer Methods in Applied Mechanics and Engineering, 2014, 272, 1-16.	6.6	15
65	Subgrid stabilized defect-correction method for a steady-state natural convection problem. Computers and Mathematics With Applications, 2014, 67, 497-514.	2.7	15
66	Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Computers and Mathematics With Applications, 2014, 68, 543-567.	2.7	30
67	Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with \$p\$-Laplacian. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1801-1814.	0.9	4
68	A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations. Acta Applicandae Mathematicae, 2014, 130, 115-134.	1.0	0
69	A posteriori error estimation for a defect correction method applied to conduction convection problems. Numerical Methods for Partial Differential Equations, 2013, 29, 496-509.	3.6	5
70	Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations. Journal of Scientific Computing, 2013, 55, 255-267.	2.3	17
71	Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials. SIAM Journal on Numerical Analysis, 2013, 51, 88-111.	2.3	39
72	Adaptive variational multiscale method for the Stokes equations. International Journal for Numerical Methods in Fluids, 2013, 71, 1369-1381.	1.6	9

#	Article	IF	CITATIONS
73	A twoâ€level method in space and time for the Navierâ€Stokes equations. Numerical Methods for Partial Differential Equations, 2013, 29, 1504-1521.	3.6	3
74	Dimension splitting algorithm for a three-dimensional elliptic equation. International Journal of Computer Mathematics, 2012, 89, 112-127.	1.8	15
75	The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations. Mathematical Problems in Engineering, 2012, 2012, 1-11.	1.1	16
76	The Pullback Asymptotic Behavior of the Solutions for 2D Nonautonomous <i>G</i> -Navier-Stokes Equations. Advances in Applied Mathematics and Mechanics, 2012, 4, 223-237.	1.2	3
77	Variational multiscale method based on the Crank–Nicolson extrapolation scheme for the non-stationary Navier–Stokes equations. International Journal of Computer Mathematics, 2012, 89, 2198-2223.	1.8	8
78	A two-level method in time and space for solving the Navier–Stokes equations based on Newton iteration. Computers and Mathematics With Applications, 2012, 64, 3569-3579.	2.7	13
79	Immersed Interface Method for elliptic equations based on a piecewise second order polynomial. Computers and Mathematics With Applications, 2012, 63, 957-965.	2.7	6
80	Pullback \$mathcal{D}\$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete and Continuous Dynamical Systems, 2012, 32, 991-1009.	0.9	5
81	Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness. Applied Mathematics and Mechanics (English Edition), 2011, 32, 151-166.	3.6	10
82	Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems. Applied Mathematics and Mechanics (English Edition), 2011, 32, 1269-1286.	3.6	6
83	The twoâ€grid stabilization of equalâ€order finite elements for the stokes equations. International Journal for Numerical Methods in Fluids, 2011, 67, 2054-2061.	1.6	6
84	A posteriori error estimation and adaptive computation of conduction convection problems. Applied Mathematical Modelling, 2011, 35, 2336-2347.	4.2	26
85	Galerkin and subspace decomposition methods in space and time for the Navier–Stokes equations. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 3218-3231.	1.1	2
86	Defect correction method for time-dependent viscoelastic fluid flow. International Journal of Computer Mathematics, 2011, 88, 1546-1563.	1.8	10
87	A Defect-Correction Method for Time-Dependent Viscoelastic Fluid Flow Based on SUPG Formulation. Discrete Dynamics in Nature and Society, 2011, 2011, 1-25.	0.9	3
88	Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31, 239-252.	0.9	33
89	A variational multiscale method based on bubble functions for convection-dominated convection–diffusion equation. Applied Mathematics and Computation, 2010, 217, 2226-2237.	2.2	11
90	Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains. Applied Mathematics and Mechanics (English Edition), 2010, 31, 697-708.	3.6	17

#	Article	IF	CITATIONS
91	A quadratic equalâ€order stabilized method for Stokes problem based on two local Gauss integrations. Numerical Methods for Partial Differential Equations, 2010, 26, 1180-1190.	3.6	31
92	A two-level finite element method for the Navier–Stokes equations based on a new projection. Applied Mathematical Modelling, 2010, 34, 383-399.	4.2	25
93	Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations. Journal of Computational Physics, 2010, 229, 7030-7041.	3.8	33
94	A TWO-LEVEL DEFECT–CORRECTION METHOD FOR NAVIER–STOKES EQUATIONS. Bulletin of the Australian Mathematical Society, 2010, 81, 442-454.	0.5	28
95	A two-level correction method in space and time based on Crank–Nicolson scheme for Navier–Stokes equations. International Journal of Computer Mathematics, 2010, 87, 2520-2532.	1.8	5
96	A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow. SIAM Journal of Scientific Computing, 2010, 32, 1346-1360.	2.8	27
97	A postprocessing mixed finite element method for the Navier–Stokes equations. International Journal of Computational Fluid Dynamics, 2009, 23, 461-475.	1.2	20
98	Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Applied Mathematics and Mechanics (English Edition), 2009, 30, 787-794.	3.6	26
99	A finite element variational multiscale method for incompressible flows based on two local gauss integrations. Journal of Computational Physics, 2009, 228, 5961-5977.	3.8	76
100	A fully discrete stabilized finite element method for the time-dependent Navier–Stokes equations. Applied Mathematics and Computation, 2009, 215, 85-99.	2.2	12
101	The global attractor of g-Navier–Stokes equations with linear dampness on. Applied Mathematics and Computation, 2009, 215, 1068-1076.	2.2	23
102	A stabilized semi-implicit Galerkin scheme for Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2009, 231, 552-560.	2.0	2
103	Postprocessing Fourier Galerkin Method for the Navier–Stokes Equations. SIAM Journal on Numerical Analysis, 2009, 47, 1909-1922.	2.3	19
104	Tangent space correction method for the Galerkin approximation based on two-grid finite element. Applied Mathematics and Computation, 2006, 175, 413-429.	2.2	8
105	The uniform attractor for the 2D non-autonomous Navier–Stokes flow in some unbounded domain. Nonlinear Analysis: Theory, Methods & Applications, 2004, 58, 609-630.	1.1	19
106	IMD based nonlinear Galerkin method. Applied Mathematics and Mechanics (English Edition), 2003, 24, 326-337.	3.6	0
107	A Small Eddy Correction Method for Nonlinear Dissipative Evolutionary Equations. SIAM Journal on Numerical Analysis, 2003, 41, 1101-1130.	2.3	18
108	An AIM and one-step Newton method for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 6141-6155.	6.6	37

#	Article	IF	CITATIONS
109	Stability and convergence of optimum spectral non-linear Galerkin methods. Mathematical Methods in the Applied Sciences, 2001, 24, 289-317.	2.3	6