
Hirotake Ichise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035379/publications.pdf Version: 2024-02-01

HIDOTAKE ICHISE

#	Article	IF	CITATIONS
1	Gastrin-releasing peptide regulates fear learning under stressed conditions via activation of the amygdalostriatal transition area. Molecular Psychiatry, 2022, 27, 1694-1703.	7.9	1
2	S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress–dependent VEGF-C signaling. JCI Insight, 2020, 5, .	5.0	47
3	CBP/p300 antagonises EGFRâ€Rasâ€Erk signalling and suppresses increased Rasâ€Erk signallingâ€induced tumour formation in mice. Journal of Pathology, 2019, 249, 39-51.	4.5	16
4	Phospholipase Cγ2 Is Required for Luminal Expansion of the Epididymal Duct during Postnatal Development in Mice. PLoS ONE, 2016, 11, e0150521.	2.5	6
5	Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice. Experimental Animals, 2016, 65, 231-244.	1.1	11
6	FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFÎ ² signalling via Smad2. Journal of Cell Science, 2014, 127, 845-57.	2.0	46
7	Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Science Signaling, 2014, 7, ra97.	3.6	57
8	The <i>Cd6</i> gene as a permissive locus for targeted transgenesis in the mouse. Genesis, 2014, 52, 440-450.	1.6	8
9	Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 22241-22252.	3.4	136
10	Ras/MAPK Signaling Modulates VEGFR-3 Expression through Ets-Mediated p300 Recruitment and Histone Acetylation on the Vegfr3 Gene in Lymphatic Endothelial Cells. PLoS ONE, 2012, 7, e51639.	2.5	17
11	Nucleoredoxin Sustains Wnt/β-Catenin Signaling by Retaining a Pool of Inactive Dishevelled Protein. Current Biology, 2010, 20, 1945-1952.	3.9	67
12	Nucleoredoxin Negatively Regulates Toll-like Receptor 4 Signaling via Recruitment of Flightless-I to Myeloid Differentiation Primary Response Gene (88). Journal of Biological Chemistry, 2010, 285, 18586-18593.	3.4	33
13	H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development (Cambridge), 2010, 137, 1003-1013.	2.5	58
14	Phospholipase Cl̂³2 is necessary for separation of blood and lymphatic vasculature in mice. Development (Cambridge), 2009, 136, 191-195.	2.5	86
15	Development of a new method for isolation and longâ€ŧerm culture of organâ€specific blood vascular and lymphatic endothelial cells of the mouse. FEBS Journal, 2008, 275, 1988-1998.	4.7	25
16	Establishment of an MT4â€MMPâ€deficient mouse strain representing an efficient tracking system for MT4â€MMP/MMPâ€17 expression <i>in vivo</i> using βâ€galactosidase. Genes To Cells, 2007, 12, 1091-1100.	1.2	41
17	Morphological Change Caused by Loss of the Taxon-Specific Polyalanine Tract in Hoxd-13. Molecular Biology and Evolution, 2006, 24, 281-287.	8.9	28
18	Efficient Sequential Gene Regulation via FLP―and Creâ€Recombinase Using Adenovirus Vector in Mammalian Cells Including Mouse ES Cells. Microbiology and Immunology, 2006, 50, 831-843.	1.4	13

#	Article	IF	CITATIONS
19	Gene transfer and expression in mouse preimplantation embryos by recombinant adenovirus vector. Molecular Reproduction and Development, 1995, 42, 291-297.	2.0	18