Michael V Mirkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035345/publications.pdf

Version: 2024-02-01

159 papers 11,275 citations

59 h-index 101 g-index

165 all docs

165 docs citations 165 times ranked 5257 citing authors

#	Article	IF	Citations
1	Scanning Electrochemical Microscopy. Annual Review of Analytical Chemistry, 2008, 1, 95-131.	5.4	381
2	Kinetics of Electron-Transfer Reactions at Nanoelectrodes. Analytical Chemistry, 2006, 78, 6526-6534.	6.5	356
3	Scanning Electrochemical Microscopy. 31. Application of SECM to the Study of Charge Transfer Processes at the Liquid/Liquid Interface. The Journal of Physical Chemistry, 1995, 99, 16033-16042.	2.9	330
4	Scanning electrochemical microscopy. 12. Theory and experiment of the feedback mode with finite heterogeneous electron-transfer kinetics and arbitrary substrate size. The Journal of Physical Chemistry, 1992, 96, 1861-1868.	2.9	309
5	Scanning electrochemical microscopy in the 21st century. Physical Chemistry Chemical Physics, 2007, 9, 802-823.	2.8	276
6	Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 308, 27-38.	0.1	272
7	Nanometer-Sized Electrochemical Sensors. Analytical Chemistry, 1997, 69, 1627-1634.	6.5	265
8	Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. Journal of Electroanalytical Chemistry, 1992, 328, 47-62.	3.8	254
9	Simple analysis of quasi-reversible steady-state voltammograms. Analytical Chemistry, 1992, 64, 2293-2302.	6.5	236
10	Nanoelectrochemistry of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 443-448.	7.1	207
11	Scanning electrochemical microscopy. 19. Ion-selective potentiometric microscopy. Analytical Chemistry, 1993, 65, 1213-1224.	6.5	206
12	Electron Transfer at Self-Assembled Monolayers Measured by Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2004, 126, 1485-1492.	13.7	201
13	Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11534-11539.	7.1	199
14	Probing Ion Transfer at the Liquid/Liquid Interface by Scanning Electrochemical Microscopy (SECM). Journal of Physical Chemistry B, 1998, 102, 9915-9921.	2.6	186
15	Scanning electrochemical microscopy of living cells: Different redox activities of nonmetastatic and metastatic human breast cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9855-9860.	7.1	185
16	Electroanalytical measurements using the scanning electrochemical microscope. Analytica Chimica Acta, 2000, 406, 119-146.	5.4	183
17	Borohydride Oxidation at a Gold Electrode. Journal of the Electrochemical Society, 1992, 139, 2212-2217.	2.9	182
18	Adsorption/Desorption of Hydrogen on Pt Nanoelectrodes: Evidence of Surface Diffusion and Spillover. Journal of the American Chemical Society, 2009, 131, 14756-14760.	13.7	170

#	Article	IF	Citations
19	Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells. Journal of the American Chemical Society, 2017, 139, 13055-13062.	13.7	162
20	Electrochemical attosyringe. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11895-11900.	7.1	161
21	Scanning Electrochemical Microscopy. 34. Potential Dependence of the Electron-Transfer Rate and Film Formation at the Liquid/Liquid Interface. The Journal of Physical Chemistry, 1996, 100, 17881-17888.	2.9	159
22	Fast Kinetic Measurements with Nanometer-Sized Pipets. Transfer of Potassium Ion from Water into Dichloroethane Facilitated by Dibenzo-18-crown-6. Journal of the American Chemical Society, 1997, 119, 8103-8104.	13.7	158
23	Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 14120-14123.	13.8	150
24	Electrochemistry of Individual Molecules in Zeptoliter Volumes. Journal of the American Chemical Society, 2008, 130, 8241-8250.	13.7	146
25	Long-Range Electron Transfer through a Lipid Monolayer at the Liquid/Liquid Interface. Journal of the American Chemical Society, 1997, 119, 10785-10792.	13.7	145
26	Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Physical Chemistry Chemical Physics, 2011, 13, 21196.	2.8	133
27	Scanning electrochemical microscopy. 20. Steady-state measurements of the fast heterogeneous kinetics in the ferrocene/acetonitrile system. The Journal of Physical Chemistry, 1993, 97, 7672-7677.	2.9	123
28	Scanning Electrochemical Microscopy with Gold Nanotips: The Effect of Electrode Material on Electron Transfer Rates. Journal of Physical Chemistry C, 2009, 113, 459-464.	3.1	122
29	Voltammetry at Micropipet Electrodes. Analytical Chemistry, 1998, 70, 3155-3161.	6.5	120
30	Steady-State Limiting Currents at Finite Conical Microelectrodes. Analytical Chemistry, 2002, 74, 1986-1992.	6.5	118
31	Electrochemical Measurements of Reactive Oxygen and Nitrogen Species inside Single Phagolysosomes of Living Macrophages. Journal of the American Chemical Society, 2019, 141, 4564-4568.	13.7	117
32	Electrochemistry at One Nanoparticle. Accounts of Chemical Research, 2016, 49, 2328-2335.	15.6	111
33	Scanning Electrochemical Microscopy of Living Cells. 3.Rhodobactersphaeroides. Analytical Chemistry, 2002, 74, 114-119.	6.5	106
34	Nanoscale Imaging of Surface Topography and Reactivity with the Scanning Electrochemical Microscope. Analytical Chemistry, 2009, 81, 3143-3150.	6.5	95
35	Direct Electrochemical Measurements Inside a 2000 Angstrom Thick Polymer Film by Scanning Electrochemical Microscopy. Science, 1992, 257, 364-366.	12.6	94
36	Polymer Films on Electrodes. 26. Study of Ion Transport and Electron Transfer at Polypyrrole Films by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry, 1995, 99, 5040-5050.	2.9	94

#	Article	IF	CITATIONS
37	Scanning electrochemical microscopy of living cells. Journal of Electroanalytical Chemistry, 2001, 500, 590-597.	3.8	94
38	Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chemical Science, 2013, 4, 655-663.	7.4	90
39	Resistive-Pulse Sensing Inside Single Living Cells. Journal of the American Chemical Society, 2020, 142, 5778-5784.	13.7	90
40	Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Science Advances, 2022, 8, .	10.3	89
41	Scanning Electrochemical Microscopy. 25. Application to Investigation of the Kinetics of Heterogeneous Electron Transfer at Semiconductor (WSe2 and Si) Electrodes. The Journal of Physical Chemistry, 1994, 98, 9106-9114.	2.9	86
42	Probing Rapid Ion Transfer Across a Nanoscopic Liquidâ^'Liquid Interface. Journal of Physical Chemistry B, 2004, 108, 17872-17878.	2.6	85
43	Electrochemistry and Electrocatalysis at Single Gold Nanoparticles Attached to Carbon Nanoelectrodes. ChemElectroChem, 2015, 2, 58-63.	3.4	85
44	Potential-Independent Electron Transfer Rate at the Liquid/Liquid Interface. Journal of the American Chemical Society, 1999, 121, 8352-8355.	13.7	84
45	Nucleation and growth of metal on nanoelectrodes. Chemical Science, 2012, 3, 3307.	7.4	81
46	Liquid/Liquid Interface as a Model System for Studying Electrochemical Catalysis in Microemulsions. Reduction of trans-1,2-Dibromocyclohexane with Vitamin B12. Journal of Physical Chemistry B, 1997, 101, 3202-3208.	2.6	80
47	Voltammetric and Scanning Electrochemical Microscopic Studies of the Adsorption Kinetics and Selfâ€Assembly of <i>n</i> à€Alkanethiol Monolayers on Gold. Israel Journal of Chemistry, 1997, 37, 155-163.	2.3	79
48	Scanning Electrochemical Microscopy of Living Cells. 5. Imaging of Fields of Normal and Metastatic Human Breast Cells. Analytical Chemistry, 2003, 75, 4148-4154.	6. 5	79
49	Scanning electrochemical microscopy (SECM) of facilitated ion transfer at the liquid liquid interface. Journal of Electroanalytical Chemistry, 1997, 439, 137-143.	3.8	77
50	Kinetic Study of Rapid Transfer of Tetraethylammonium at the 1,2-Dichloroethane/Water Interface by Nanopipet Voltammetry of Common Ions. Analytical Chemistry, 2010, 82, 77-83.	6.5	77
51	Determination of the kinetic parameters for the electroreduction of fullerene C60 by scanning electrochemical microscopy and fast scan cyclic voltammetry. Journal of the American Chemical Society, 1993, 115, 201-204.	13.7	75
52	Peer Reviewed: Recent Advances in Scanning Electrochemical Microscopy. Analytical Chemistry, 1996, 68, 177A-182A.	6. 5	74
53	Cavity Carbon-Nanopipette Electrodes for Dopamine Detection. Analytical Chemistry, 2019, 91, 4618-4624.	6.5	72
54	Electrochemistry at Microscopic Liquid-Liquid Interfaces. Electroanalysis, 2000, 12, 1433-1446.	2.9	69

#	Article	IF	CITATIONS
55	Scanning Electrochemical Microscopy with Slightly Recessed Nanotips. Analytical Chemistry, 2007, 79, 5809-5816.	6.5	66
56	Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11618-11623.	7.1	65
57	Scanning Electrochemical Microscopy of Living Cells. 4. Mechanistic Study of Charge Transfer Reactions in Human Breast Cells. Analytical Chemistry, 2002, 74, 6340-6348.	6.5	63
58	Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical Microscopy. Advanced Functional Materials, 2020, 30, 2001136.	14.9	63
59	Polymer Films on Electrodes. 25. Effect of Polymer Resistance on the Electrochemistry of Poly(vinylferrocene): Scanning Electrochemical Microscopic, Chronoamperometric, and Cyclic Voltammetric Studies. The Journal of Physical Chemistry, 1994, 98, 1475-1481.	2.9	62
60	Carbon Pipette-Based Electrochemical Nanosampler. Analytical Chemistry, 2014, 86, 3365-3372.	6.5	62
61	Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 6517-6523.	13.7	59
62	Electrochemical Resistive-Pulse Sensing. Journal of the American Chemical Society, 2019, 141, 19555-19559.	13.7	59
63	High resolution studies of heterogeneous processes with the scanning electrochemical microscope. Mikrochimica Acta, 1999, 130, 127-153.	5.0	58
64	Open Carbon Nanopipettes as Resistive-Pulse Sensors, Rectification Sensors, and Electrochemical Nanoprobes. Analytical Chemistry, 2014, 86, 8897-8901.	6.5	57
65	Toward the Detection and Identification of Single Bacteria by Electrochemical Collision Technique. Analytical Chemistry, 2018, 90, 12123-12130.	6.5	57
66	Nanopipet Voltammetry of Common Ions across the Liquidâ 'Liquid Interface. Theory and Limitations in Kinetic Analysis of Nanoelectrode Voltammograms. Analytical Chemistry, 2010, 82, 84-90.	6.5	55
67	Multidimensional integral equations. Journal of Electroanalytical Chemistry, 1992, 323, 1-27.	3.8	54
68	Scanning Electrochemical Microscopy. 27. Application of a Simplified Treatment of an Irreversible Homogeneous Reaction following Electron Transfer to the Oxidative Dimerization of 4-Nitrophenolate in Acetonitrile. The Journal of Physical Chemistry, 1994, 98, 5751-5757.	2.9	53
69	Cation Binding to DNA Studied by Ion-Transfer Voltammetry at Micropipets. Analytical Chemistry, 1998, 70, 4653-4660.	6.5	53
70	Atomic Force Microscopy of Electrochemical Nanoelectrodes. Analytical Chemistry, 2012, 84, 5192-5197.	6.5	53
71	Multidimensional integral equations: a new approach to solving microelectrode diffusion problems. Journal of Electroanalytical Chemistry, 1992, 323, 29-51.	3.8	52
72	Voltammetric method for the determination of borohydride concentration in alkaline aqueous solutions. Analytical Chemistry, 1991, 63, 532-533.	6.5	51

#	Article	IF	Citations
73	Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle. Analytical Chemistry, 2017, 89, 2880-2885.	6.5	51
74	SECM Measurement of the Fast Electron Transfer Dynamics between Au381+ Nanoparticles and Aqueous Redox Species at a Liquid/Liquid Interface. Nano Letters, 2004, 4, 1763-1767.	9.1	48
75	Scanning electrochemical microscopy. 22. Examination of thin solid silver(I) bromide films: ion diffusion in the film and heterogeneous kinetics at the film/solution interface. The Journal of Physical Chemistry, 1993, 97, 10790-10795.	2.9	47
76	Shuttling Mechanism of Ion Transfer at the Interface between Two Immiscible Liquids. Journal of the American Chemical Society, 2006, 128, 15019-15025.	13.7	47
77	Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): a new tool for imaging and kinetic studies. Chemical Science, 2013, 4, 3606.	7.4	47
78	Scanning Electrochemical Microscopy of Single Spherical Nanoparticles: Theory and Particle Size Evaluation. Analytical Chemistry, 2015, 87, 7446-7453.	6.5	47
79	Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS ₂ nanosheets. Nanoscale Horizons, 2019, 4, 619-624.	8.0	46
80	Focused-Ion-Beam-Milled Carbon Nanoelectrodes for Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2016, 163, H3032-H3037.	2.9	45
81	Comparative Study of Electron Transfer Reactions at the Ionic Liquid/Water and Organic/Water Interfaces. Journal of the American Chemical Society, 2004, 126, 15380-15381.	13.7	44
82	Dissolution of Pt at Moderately Negative Potentials during Oxygen Reduction in Water and Organic Media. Langmuir, 2013, 29, 1346-1350.	3.5	44
83	Scanning Electrochemical Microscopy Study of Permeability of a Thiolated Aryl Multilayer and Imaging of Single Nanocubes Anchored to It. Langmuir, 2016, 32, 2500-2508.	3.5	44
84	Role of Trace Amounts of Water in Transfers of Hydrophilic and Hydrophobic Ions to Low-Polarity Organic Solvents. Journal of the American Chemical Society, 2007, 129, 12410-12411.	13.7	43
85	Kinetics of Ion Transfer at the Ionic Liquid/Water Nanointerface. Journal of the American Chemical Society, 2010, 132, 16945-16952.	13.7	42
86	Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160931.	2.1	42
87	Electron-Transfer Gated Ion Transport in Carbon Nanopipets. Journal of the American Chemical Society, 2017, 139, 11654-11657.	13.7	41
88	Kinetics of Charge†ransfer Reactions at Nanoscopic Electrochemical Interfaces. Israel Journal of Chemistry, 2010, 50, 291-305.	2.3	40
89	Electrochemistry through glass. Nature Chemistry, 2010, 2, 498-502.	13.6	39
90	Polished Nanopipets: New Probes for High-Resolution Scanning Electrochemical Microscopy. Analytical Chemistry, 2011, 83, 671-673.	6.5	39

#	Article	IF	Citations
91	Nucleation and growth of mercury on Pt nanoelectrodes at different overpotentials. Chemical Science, 2014, 5, 189-194.	7.4	39
92	Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles. Analytical Chemistry, 2015, 87, 6403-6410.	6.5	39
93	Correlating Molecule Count and Release Kinetics with Vesicular Size Using Open Carbon Nanopipettes. Journal of the American Chemical Society, 2020, 142, 16910-16914.	13.7	39
94	Studying Ionic Reactions by a New Generation/Collection Technique. Journal of the American Chemical Society, 1998, 120, 12700-12701.	13.7	38
95	Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. Journal of Solid State Electrochemistry, 2013, 17, 2971-2977.	2.5	37
96	Dual-Pipet Techniques for Probing Ionic Reactions. Analytical Chemistry, 2000, 72, 510-519.	6.5	36
97	Electrochemical Size Measurement and Characterization of Electrodeposited Platinum Nanoparticles at Nanometer Resolution with Scanning Electrochemical Microscopy. Nano Letters, 2017, 17, 4354-4358.	9.1	36
98	Nanoelectrodes for intracellular measurements of reactive oxygen and nitrogen species in single living cells. Current Opinion in Electrochemistry, 2020, 22, 44-50.	4.8	35
99	Scanning Electrochemical Microscopy: Detection of Human Breast Cancer Cells by Redox Environment. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 375-382.	2.7	33
100	Toward More Reliable Measurements of Electron-Transfer Kinetics at Nanoelectrodes: Next Approximation. Analytical Chemistry, 2016, 88, 11758-11766.	6.5	33
101	Ultrasensitive Detection of Dopamine with Carbon Nanopipets. Analytical Chemistry, 2019, 91, 12935-12941.	6.5	33
102	The double life of conductive nanopipette: a nanopore and an electrochemical nanosensor. Chemical Science, 2020, 11, 9056-9066.	7.4	33
103	Electron Transfer Kinetics at Polarized Nanoscopic Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2006, 128, 171-179.	13.7	32
104	Delivery of Single Nanoparticles from Nanopipettes under Resistiveâ€Pulse Control. ChemElectroChem, 2015, 2, 343-347.	3.4	31
105	Peer Reviewed: Charge Transfer Reactions at the Liquid/Liquid Interface Analytical Chemistry, 2001, 73, 670 A-677 A.	6.5	30
106	Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy. Analytical Chemistry, 2016, 88, 1547-1552.	6.5	29
107	lon Transfer at Nanointerfaces between Water and Neat Organic Solvents. Journal of the American Chemical Society, 2005, 127, 8596-8597.	13.7	28
108	Effect of Mechanical Stress on the Kinetics of Heterogeneous Electron Transfer. Langmuir, 2008, 24, 9941-9944.	3.5	28

#	Article	IF	CITATIONS
109	Cleaning Nanoelectrodes with Air Plasma. Analytical Chemistry, 2015, 87, 4092-4095.	6.5	28
110	Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 7463-7467.	13.8	28
111	Ostraka: Secure Blockchain Scaling by Node Sharding. , 2020, , .		28
112	Electron Transfer at Liquid/Liquid Interfaces. The Effects of Ionic Adsorption, Electrolyte Concentration, and Spacer Length on the Reaction Rate. Journal of Physical Chemistry B, 2002, 106, 3933-3940.	2.6	27
113	An Electrochiroptical Molecular Switch:Â Mechanistic and Kinetic Studies. Inorganic Chemistry, 2005, 44, 7652-7660.	4.0	27
114	Fabrication of Nanoelectrodes and Metal Clusters by Electrodeposition. ChemPhysChem, 2010, 11, 3011-3017.	2.1	27
115	Scanning Electrochemical Microscopy 18: Thin Layer Cell Formation with a Mercury Pool Substrate. Journal of the Electrochemical Society, 1992, 139, 3535-3539.	2.9	26
116	Electrochemical detection of lateral charge transport in metal complex-DNA monolayers synthesized on Si(111) electrodes. Journal of Electroanalytical Chemistry, 2007, 603, 67-80.	3.8	25
117	Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles. Analytical Chemistry, 2017, 89, 12618-12621.	6.5	24
118	SECM Study of Solute Partitioning and Electron Transfer at the Ionic Liquid/Water Interface. Langmuir, 2006, 22, 10705-10710.	3.5	23
119	Photo-Scanning Electrochemical Microscopy on the Nanoscale with Through-Tip Illumination. Analytical Chemistry, 2019, 91, 12601-12605.	6.5	23
120	Mediated Charge Transfer at Nanoelectrodes: A New Approach to Electrochemical Reactivity Mapping and Nanosensing. Journal of the American Chemical Society, 2021, 143, 8547-8551.	13.7	22
121	Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes. Journal of Physical Chemistry C, 2016, 120, 20651-20658.	3.1	21
122	Diffuse Layer Effect on Electron-Transfer Kinetics Measured by Scanning Electrochemical Microscopy (SECM). Journal of Physical Chemistry Letters, 2017, 8, 1338-1342.	4.6	21
123	Fabrication, characterization, and chemical etching of Ag nanoelectrodes. Journal of Solid State Electrochemistry, 2013, 17, 385-389.	2.5	20
124	Surface-Charge Effects on Voltammetry in Carbon Nanocavities. Analytical Chemistry, 2019, 91, 5530-5536.	6.5	20
125	Thin layer cell behavior of CNT yarn and cavity carbon nanopipette electrodes: Effect on catecholamine detection. Electrochimica Acta, 2020, 361, 137032.	5.2	18
126	Surface Patterning Using Diazonium Ink Filled Nanopipette. Analytical Chemistry, 2015, 87, 10956-10962.	6.5	17

#	Article	IF	Citations
127	Evidence for a potential-dependent reversible inactivation of urease adsorbed on a gold electrode. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1115-1118.	1.7	16
128	Ultrasensitive Electroanalysis: Femtomolar Determination of Lead, Cobalt, and Nickel. Analytical Chemistry, 2018, 90, 1142-1146.	6.5	16
129	TEM-Assisted Fabrication of Sub-10 nm Scanning Electrochemical Microscopy Tips. Analytical Chemistry, 2019, 91, 15355-15359.	6.5	16
130	Electrochemistry at a single nanoparticle: from bipolar regime to tunnelling. Faraday Discussions, 2018, 210, 173-188.	3.2	15
131	Recessed Nanoelectrodes for Nanogap Voltammetry. ChemElectroChem, 2016, 3, 2043-2047.	3.4	11
132	Light-Controlled Nanoparticle Collision Experiments. Journal of Physical Chemistry Letters, 2020, 11, 2972-2976.	4.6	11
133	[10] Probing redox activity of human breast cells by scanning electrochemical microscopy. Methods in Enzymology, 2002, 352, 112-122.	1.0	9
134	Electrochemical Studies of the Lateral Diffusion of TEMPO in the Aqueous Liquid/Vapor Interfacial Region. Journal of Physical Chemistry B, 2006, 110, 6101-6109.	2.6	9
135	Scanning Electrochemical and Photoelectrochemical Microscopy on Finder Grids: Toward Correlative Multitechnique Imaging of Surfaces. Analytical Chemistry, 2021, 93, 5377-5382.	6.5	9
136	Determination of Electrode Kinetics. , 2007, , 639-660.		8
137	Chapter 1. Nanoelectrochemistry at the liquid/liquid interfaces. SPR Electrochemistry, 0, , 1-43.	0.7	8
138	Voltage-Driven Molecular Catalysis of Electrochemical Reactions. Journal of the American Chemical Society, 2021, 143, 17344-17347.	13.7	8
139	Probing Activities of Individual Catalytic Nanoflakes by Tunneling Mode of Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2021, 125, 25525-25532.	3.1	7
140	Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM. Analytical Chemistry, 2022, 94, 7169-7173.	6.5	6
141	Theory and Simulations for the Electronâ€Transfer/Ionâ€Transfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics. ChemElectroChem, 2017, 4, 287-295.	3.4	5
142	Electrochemical Evaluation of the Number of Au Atoms in Polymeric Gold Thiolates by Single Particle Collisions. Analytical Chemistry, 2018, 90, 8285-8289.	6.5	5
143	Catalytic Amplification of Au 144 Nanocluster Collisions by Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 2991-2994.	3.4	5
144	Electrochemical microscopy at the nanoscale. Frontiers of Nanoscience, 2021, 18, 129-202.	0.6	5

#	Article	IF	CITATIONS
145	Stabilizing the heavily-doped and metallic phase of MoS ₂ monolayers with surface functionalization. 2D Materials, 2022, 9, 015033.	4.4	5
146	Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.	3.2	4
147	Metalâ€Organicâ€Frameworkâ€Based Electrochemical Nanosensor for Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	3.4	4
148	Processes at nanopores and bio-nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 145-171.	3.2	3
149	Nitride MXenes: Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical Microscopy (Adv. Funct. Mater. 47/2020). Advanced Functional Materials, 2020, 30, 2070313.	14.9	3
150	Computer modeling 3-D nucleation and growth. Computers & Chemistry, 1991, 15, 169-174.	1.2	2
151	Kinetics of Quantized Charging of Au 144 Nanoclusters. Electroanalysis, 2016, 28, 2288-2292.	2.9	2
152	Theory and Simulations for the Electron Transfer/Ion Transfer Mode of SECM with Electroactive Species Present in Both Liquid Phases. ChemElectroChem, 2019, 6, 189-194.	3.4	2
153	Electrochemistry at Microscopic Liquid–Liquid Interfaces. Electroanalysis, 2000, 12, 1433-1446.	2.9	2
154	Scanning Electrochemical Microscopy Beyond Imaging., 2006,, 431-467.		1
155	Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles. Angewandte Chemie, 2018, 130, 7585-7589.	2.0	1
156	Processes at nanoelectrodes: general discussion. Faraday Discussions, 2018, 210, 235-265.	3.2	1
157	Theory and Simulations for the Electronâ€Transfer/lonâ€Transfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics. ChemElectroChem, 2017, 4, 240-240.	3.4	0
158	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	3.2	0
159	Editorial Overview: Physical and Nanoelectrochemistry: Physical and nanoelectrochemistry with a personal touch. Current Opinion in Electrochemistry, 2019, 13, A5-A6.	4.8	0