David A Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4035253/publications.pdf

Version: 2024-02-01

140 papers 12,320 citations

44042 48 h-index 97 g-index

144 all docs

144 docs citations

times ranked

144

5393 citing authors

#	Article	IF	CITATIONS
1	Comparative influence of differentiation and proliferation on gene expression in human meibomian gland epithelial cells. Experimental Eye Research, 2021, 205, 108452.	1.2	7
2	TFOS: Unique challenges and unmet needs for the management of ocular surface diseases throughout the world. Ocular Surface, 2021, 22, 242-244.	2.2	4
3	Expression of Lubricin in the Human Amniotic Membrane. Cornea, 2020, 39, 118-121.	0.9	4
4	Ocular Manifestations of Chordin-like 1 Knockout Mice. Cornea, 2020, 39, 1145-1150.	0.9	2
5	Effects of Terpinen-4-ol on Meibomian Gland Epithelial Cells In Vitro. Cornea, 2020, 39, 1541-1546.	0.9	23
6	Mouse Meibomian Gland Dysfunction Model. , 2020, 61, 18.		0
7	TFOS European Ambassador meeting: Unmet needs and future scientific and clinical solutions for ocular surface diseases. Ocular Surface, 2020, 18, 936-962.	2.2	11
8	The Role of Hypoxia-Inducible Factor $\hat{1l}$ in the Regulation of Human Meibomian Gland Epithelial Cells. , 2020, 61, 1.		9
9	Dihydrotestosterone suppression of proinflammatory gene expression in human meibomian gland epithelial cells. Ocular Surface, 2020, 18, 199-205.	2.2	13
10	Toxicity of the cosmetic preservatives parabens, phenoxyethanol and chlorphenesin on human meibomian gland epithelial cells. Experimental Eye Research, 2020, 196, 108057.	1.2	22
11	The Carbonic Anhydrase Inhibitor Dorzolamide Stimulates the Differentiation of Human Meibomian Gland Epithelial Cells. Current Eye Research, 2020, 45, 1604-1610.	0.7	3
12	Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. , 2019, 60, 2181.		15
13	Are BALB/c Mice Relevant Models for Understanding Sex-Related Differences in Gene Expression in the Human Meibomian Gland?. Cornea, 2019, 38, 1554-1562.	0.9	5
14	Hypoxia: A breath of fresh air for the meibomian gland. Ocular Surface, 2019, 17, 310-317.	2.2	18
15	How to choose and conduct a research project: some advice for young investigators. Arquivos Brasileiros De Oftalmologia, 2019, 82, 1.	0.2	0
16	Toxicity of cosmetic preservatives on human ocular surface and adnexal cells. Experimental Eye Research, 2018, 170, 188-197.	1.2	28
17	Meibomian Gland Dysfunction in Primary and Secondary Sjögren Syndrome. Ophthalmic Research, 2018, 59, 193-205.	1.0	47
18	Effect of brimonidine, an $\hat{l}\pm 2$ adrenergic agonist, on human meibomian gland epithelial cells. Experimental Eye Research, 2018, 170, 20-28.	1.2	18

#	Article	IF	Citations
19	The Effect of Solithromycin, a Cationic Amphiphilic Drug, on the Proliferation and Differentiation of Human Meibomian Gland Epithelial Cells. Current Eye Research, 2018, 43, 683-688.	0.7	10
20	The scientific dry eye disease journey: From the beginning to the end of the beginning. Contact Lens and Anterior Eye, 2018, 41, 1-4.	0.8	0
21	Sex Effects on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. , 2018, 59, 5599.		18
22	Biomarkers for Progenitor and Differentiated Epithelial Cells in the Human Meibomian Gland. Stem Cells Translational Medicine, 2018, 7, 887-892.	1.6	29
23	Type I Interferon Signaling Is Required for Dacryoadenitis in the Nonobese Diabetic Mouse Model of SjÁ¶gren Syndrome. International Journal of Molecular Sciences, 2018, 19, 3259.	1.8	10
24	Short Tandem Repeat (STR) Profiles of Commonly Used Human Ocular Surface Cell Lines. Current Eye Research, 2018, 43, 1097-1101.	0.7	16
25	Influence of lipopolysaccharide on proinflammatory gene expression in human corneal, conjunctival and meibomian gland epithelial cells. Ocular Surface, 2018, 16, 382-389.	2.2	14
26	Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells. Scientific Reports, 2018, 8, 3280.	1.6	14
27	Testosterone Pathway Genetic Polymorphisms in Relation to Primary Open-Angle Glaucoma: An Analysis in Two Large Datasets. , 2018, 59, 629.		14
28	Influence of Pilocarpine and Timolol on Human Meibomian Gland Epithelial Cells. Cornea, 2017, 36, 719-724.	0.9	22
29	TFOS DEWS II Introduction. Ocular Surface, 2017, 15, 269-275.	2.2	180
30	TFOS DEWS II pathophysiology report. Ocular Surface, 2017, 15, 438-510.	2.2	1,049
31	TFOS DEWS II Sex, Gender, and Hormones Report. Ocular Surface, 2017, 15, 284-333.	2.2	260
32	TFOS DEWS II Report Executive Summary. Ocular Surface, 2017, 15, 802-812.	2.2	502
33	A Two-Week, Randomized, Double-masked Study to Evaluate Safety and Efficacy of Lubricin (150Âμg/mL) Eye Drops Versus Sodium Hyaluronate (HA) 0.18% Eye Drops (Vismed®) in Patients with Moderate Dry Eye Disease. Ocular Surface, 2017, 15, 77-87.	2.2	73
34	Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland. Journal of Ophthalmology, 2016, 2016, 1-7.	0.6	14
35	Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?. , 2016, 57, 4287.		20
36	Influence of Omega 3 and 6 Fatty Acids on Human Meibomian Gland Epithelial Cells. Cornea, 2016, 35, 1122-1126.	0.9	41

#	Article	IF	CITATIONS
37	Is Estrogen a Therapeutic Target for Glaucoma?. Seminars in Ophthalmology, 2016, 31, 140-146.	0.8	65
38	Human Growth Hormone Promotes Corneal Epithelial Cell Migration in Vitro. Cornea, 2015, 34, 686-692.	0.9	21
39	Effects of Insulin and High Glucose on Human Meibomian Gland Epithelial Cells. , 2015, 56, 7814.		46
40	Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone. Ocular Surface, 2015, 13, 204-212.e1.	2.2	49
41	Can Tetracycline Antibiotics Duplicate the Ability of Azithromycin to Stimulate Human Meibomian Gland Epithelial Cell Differentiation?. Cornea, 2015, 34, 342-346.	0.9	39
42	Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells., 2014, 55, 3866.		50
43	Effect of Azithromycin on Lipid Accumulation in Immortalized Human Meibomian Gland Epithelial Cells. JAMA Ophthalmology, 2014, 132, 226.	1.4	67
44	The Effects of Insulin-like Growth Factor 1 and Growth Hormone on Human Meibomian Gland Epithelial Cells. JAMA Ophthalmology, 2014, 132, 593.	1.4	31
45	One man's poison is another man's meat: Using azithromycin-induced phospholipidosis to promote ocular surface health. Toxicology, 2014, 320, 1-5.	2.0	59
46	Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant. Experimental Eye Research, 2014, 127, 14-19.	1.2	78
47	Does estrogen deficiency cause lacrimal gland inflammation and aqueous-deficient dry eye in mice?. Experimental Eye Research, 2014, 127, 153-160.	1.2	23
48	Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface. JAMA Ophthalmology, 2013, 131, 766.	1.4	101
49	Characterization of ocular gland morphology and tear composition of pinnipeds. Veterinary Ophthalmology, 2013, 16, 269-275.	0.6	16
50	2. Contact lens care and ocular surface homeostasis. Contact Lens and Anterior Eye, 2013, 36, S9-S13.	0.8	9
51	Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells. , 2013, 54, 2541.		42
52	The TFOS International Workshop on Contact Lens Discomfort: Executive Summary. , 2013, 54, TFOS7.		171
53	The TFOS International Workshop on Contact Lens Discomfort: Introduction. , 2013, 54, TFOS1.		29
54	The Influence of 13- <i>cis</i> Retinoic Acid on Human Meibomian Gland Epithelial Cells., 2013, 54, 4341.		66

#	Article	IF	Citations
55	Influence of Aromatase Absence on the Gene Expression and Histology of the Mouse Meibomian Gland. , 2013, 54, 987.		18
56	Dose-Dependent and Synergistic Effects of Proteoglycan 4 on Boundary Lubrication at a Human Cornea–Polydimethylsiloxane Biointerface. Eye and Contact Lens, 2012, 38, 27-35.	0.8	31
57	Regulation of Leukotriene B ₄ Secretion by Human Corneal, Conjunctival, and Meibomian Gland Epithelial Cells. JAMA Ophthalmology, 2012, 130, 1013.	2.6	25
58	Aging and dry eye disease. Experimental Gerontology, 2012, 47, 483-490.	1.2	125
59	Androgen regulation of gene expression in human meibomian gland and conjunctival epithelial cells. Molecular Vision, 2012, 18, 1055-67.	1.1	44
60	Changes in Gene Expression in Human Meibomian Gland Dysfunction., 2011, 52, 2727.		66
61	The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on Anatomy, Physiology, and Pathophysiology of the Meibomian Gland. , 2011, 52, 1938.		780
62	Neurotransmitter Influence on Human Meibomian Gland Epithelial Cells., 2011, 52, 8543.		52
63	The International Workshop on Meibomian Gland Dysfunction: Executive Summary., 2011, 52, 1922.		738
64	Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells., 2010, 51, 3993.		93
65	Prevalence of Dry Eye Disease Among US Men. JAMA Ophthalmology, 2009, 127, 763.	2.6	483
66	Impact of aging and gender on the lg-containing cell profile of the lacrimal gland. Acta Ophthalmologica, 2009, 66, 87-92.	0.6	25
67	Do Genetic Alterations in Sex Steroid Receptors Contribute to Lacrimal Gland Disease in Sjogren's Syndrome?. The Open Endocrinology Journal, 2009, 3, 5-11.	0.1	5
68	Do sex steroids exert sex-specific and/or opposite effects on gene expression in lacrimal and meibomian glands?. Molecular Vision, 2009, 15, 1553-72.	1.1	82
69	Influence of sex on gene expression in human corneal epithelial cells. Molecular Vision, 2009, 15, 2554-69.	1.1	20
70	Estrogen and Progesterone Control of Gene Expression in the Mouse Meibomian Gland., 2008, 49, 1797.		76
71	Impact of Dry Eye Syndrome on Vision-Related Quality of Life. American Journal of Ophthalmology, 2007, 143, 409-415.e2.	1.7	694
72	Androgen Influence on Cholesterogenic Enzyme mRNA Levels in the Mouse Meibomian Gland. Current Eye Research, 2007, 32, 393-398.	0.7	30

#	Article	IF	CITATIONS
73	Proteomic analysis of human meibomian gland secretions. British Journal of Ophthalmology, 2006, 90, 372-377.	2.1	120
74	Validation and Repeatability of a Short Questionnaire for Dry Eye Syndrome. American Journal of Ophthalmology, 2006, 142, 125-131.e2.	1.7	112
7 5	Influence of sex on gene expression in the mouse lacrimal gland. Experimental Eye Research, 2006, 82, 13-23.	1.2	38
76	Androgen regulation of lipogenic pathways in the mouse meibomian gland. Experimental Eye Research, 2006, 83, 291-296.	1.2	64
77	Estrogen's and Progesterone's Impact on Gene Expression in the Mouse Lacrimal Gland. , 2006, 47, 158.		44
78	Identification of Steroidogenic Enzyme mRNAs in the Human Lacrimal Gland, Meibomian Gland, Cornea, and Conjunctiva. Cornea, 2006, 25, 438-442.	0.9	54
79	Influence of Aging on the Polar and Neutral Lipid Profiles in Human Meibomian Gland Secretions. JAMA Ophthalmology, 2006, 124, 1286.	2.6	146
80	Influence of testosterone on gene expression in the ovariectomized mouse submandibular gland. European Journal of Oral Sciences, 2006, 114, 328-336.	0.7	5
81	Sex-Related Effect on Gene Expression in the Mouse Meibomian Gland. Current Eye Research, 2006, 31, 119-128.	0.7	24
82	Estrogen Stimulation of Proinflammatory Cytokine and Matrix Metalloproteinase Gene Expression in Human Corneal Epithelial Cells. Cornea, 2005, 24, 1004-1009.	0.9	62
83	Androgen Control of Gene Expression in the Mouse Meibomian Gland. , 2005, 46, 3666.		80
84	Androgen regulation of gene expression in the mouse lacrimal gland. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 401-413.	1.2	29
85	Ocular Mucosal Immunity. , 2005, , 1477-1496.		4
86	Tearful Relationships? Sex, Hormones, the Lacrimal Gland, and Aqueous-Deficient Dry Eye. Ocular Surface, 2004, 2, 92-123.	2.2	117
87	Nutrient intake in women with primary and secondary Sjögren's syndrome. European Journal of Clinical Nutrition, 2003, 57, 328-334.	1.3	35
88	Prevalence of dry eye syndrome among US women. American Journal of Ophthalmology, 2003, 136, 318-326.	1.7	999
89	Is Complete Androgen Insensitivity Syndrome Associated with Alterations in the Meibomian Gland and Ocular Surface?. Cornea, 2003, 22, 516-521.	0.9	94
90	Are women with SjĶgren's syndrome androgen-deficient?. Journal of Rheumatology, 2003, 30, 2413-9.	1.0	74

#	Article	IF	Citations
91	Complete Androgen Insensitivity Syndrome. JAMA Ophthalmology, 2002, 120, 1689.	2.6	122
92	Androgen Deficiency, Meibomian Gland Dysfunction, and Evaporative Dry Eye. Annals of the New York Academy of Sciences, 2002, 966, 211-222.	1.8	279
93	Do Estrogen and Progesterone Play a Role in the Dry Eye of Sjögren's Syndrome?. Annals of the New York Academy of Sciences, 2002, 966, 223-225.	1.8	28
94	Epidemiology of Dry Eye Syndrome. Advances in Experimental Medicine and Biology, 2002, 506, 989-998.	0.8	123
95	Hormone Replacement Therapy and Dry Eye Syndrome. JAMA - Journal of the American Medical Association, 2001, 286, 2114.	3.8	317
96	Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmologica, 2000, 78, 146-153.	0.4	304
97	Effect of Androgen Deficiency on the Human Meibomian Gland and Ocular Surface ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4874-4882.	1.8	172
98	Impact of Antiandrogen Treatment on the Fatty Acid Profile of Neutral Lipids in Human Meibomian Gland Secretions 1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4866-4873.	1.8	91
99	Identification of androgen receptor protein and 5alpha -reductase mRNA in human ocular tissues. British Journal of Ophthalmology, 2000, 84, 76-84.	2.1	191
100	Androgens and Dry Eye in Sjogren's Syndromea. Annals of the New York Academy of Sciences, 1999, 876, 312-324.	1.8	125
101	Expression of transcripts for cysteine-rich secretory proteins (CRISPs) in the murine lacrimal gland., 1999, 178, 371-378.		28
102	Gender- and androgen-related influence on the expression of proto-oncogene and apoptotic factor mRNAS in lacrimal glands of autoimmune and non-autoimmune mice. Journal of Steroid Biochemistry and Molecular Biology, 1999, 71, 49-61.	1.2	35
103	Impact of Gender on Exocrine Gland Inflammation in Mouse Models of Sjögren's Syndrome. Experimental Eye Research, 1999, 69, 355-366.	1.2	81
104	Gender and Androgen Treatment Influence the Expression of Proto-oncogenes and Apoptotic Factors in Lacrimal and Salivary Tissues of MRL/lprMice. Clinical Immunology and Immunopathology, 1998, 86, 59-71.	2.1	47
105	Identification and Hormonal Control of Sex Steroid Receptors in the Eye. Advances in Experimental Medicine and Biology, 1998, 438, 95-100.	0.8	28
106	Influence of Gender, Sex Steroid Hormones, and the Hypothalamic-Pituitary Axis on the Structure and Function of the Lacrimal Gland. Advances in Experimental Medicine and Biology, 1998, 438, 11-42.	0.8	102
107	Androgen Regulation of the Meibomian Gland. Advances in Experimental Medicine and Biology, 1998, 438, 327-331.	0.8	51
108	Presence and Testosterone Influence on the Levels of Anti- and Pro-Inflammatory Cytokines in Lacrimal Tissues of a Mouse Model of Sjögren's Syndrome. Advances in Experimental Medicine and Biology, 1998, 438, 485-491.	0.8	36

#	Article	IF	CITATIONS
109	Effect of sialodacryoadenitis virus exposure on acinar epithelial cells from the rat lacrimal gland. Ocular Immunology and Inflammation, 1997, 5, 181-195.	1.0	11
110	Androgen stimulation of lacrimal gland function in mouse models of Sjögren's syndrome. Journal of Steroid Biochemistry and Molecular Biology, 1997, 60, 237-245.	1.2	84
111	Identification and endocrine control of sex steroid binding sites in the lacrimal gland. Current Eye Research, 1996, 15, 279-291.	0.7	56
112	Androgen control of secretory component mRNA levels in the rat lacrimal gland. Journal of Steroid Biochemistry and Molecular Biology, 1995, 52, 239-249.	1.2	47
113	Immunocytochemical location and hormonal control of androgen receptors in lacrimal tissues of the female MRL/Mp-lpr/lpr mouse model of sjA¶gren's syndrome. Experimental Eye Research, 1995, 61, 659-666.	1.2	40
114	Androgen-Induced Suppression of Autoimmune Disease in Lacrimal Glands of Mouse Models of Sjögren's Syndrome. Advances in Experimental Medicine and Biology, 1994, 350, 683-690.	0.8	10
115	Comparative Efficacy of Androgen Analogues in Suppressing Lacrimal Gland Inflammation in a Mouse Model (MRL/lpr) of Sjögren's Syndrome. Advances in Experimental Medicine and Biology, 1994, 350, 697-700.	0.8	5
116	Neural-Endocrine Control of Secretory Component Synthesis by Lacrimal Gland Acinar Cells: Specificity, Temporal Characteristics and Molecular Basis. Advances in Experimental Medicine and Biology, 1994, 350, 175-180.	0.8	3
117	Androgen Regulation of Secretory Component mRNA Levels in the Rat Lacrimal Gland. Advances in Experimental Medicine and Biology, 1994, 350, 219-224.	0.8	3
118	Ocular Mucosal Immunity. , 1994, , 569-597.		14
118		0.8	0
	Ocular Mucosal Immunity. , 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells.	0.8	
119	Ocular Mucosal Immunity., 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells. Advances in Experimental Medicine and Biology, 1994, 350, 189-192.	0.8	0
119	Ocular Mucosal Immunity., 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells. Advances in Experimental Medicine and Biology, 1994, 350, 189-192. Androgen Regulation of Ocular Mucosal- and Auto-Immunity., 1994, , 213-222. Influence of gender and the endocrine environment on the distribution of androgen receptors in the		0
119 120 121	Ocular Mucosal Immunity., 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells. Advances in Experimental Medicine and Biology, 1994, 350, 189-192. Androgen Regulation of Ocular Mucosal- and Auto-Immunity., 1994, , 213-222. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 737-749. Potential therapeutic approach for the hormonal treatment of lacrimal gland dysfunction in	1.2	0 0 53
119 120 121 122	Ocular Mucosal Immunity. , 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells. Advances in Experimental Medicine and Biology, 1994, 350, 189-192. Androgen Regulation of Ocular Mucosal- and Auto-Immunity. , 1994, , 213-222. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 737-749. Potential therapeutic approach for the hormonal treatment of lacrimal gland dysfunction in Sj¶gren's syndrome. Clinical Immunology and Immunopathology, 1992, 64, 9-16. Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides, 1990,	1.2 2.1	0 0 53 25
119 120 121 122	Ocular Mucosal Immunity., 1994, , 569-597. Influence of the Endocrine Environment on Herpes Virus Infection in Rat Lacrimal Gland Acinar Cells. Advances in Experimental Medicine and Biology, 1994, 350, 189-192. Androgen Regulation of Ocular Mucosal- and Auto-Immunity., 1994, , 213-222. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 737-749. Potential therapeutic approach for the hormonal treatment of lacrimal gland dysfunction in SjĶgren's syndrome. Clinical Immunology and Immunopathology, 1992, 64, 9-16. Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides, 1990, 11, 477-483. Ageâ€-and genderâ€related influence on the lacrimal gland and tears. Acta Ophthalmologica, 1990, 68,	1.2 2.1 1.2	0 0 53 25 24

#	Article	IF	CITATIONS
127	Influence of the hypothalamic-pituitary axis on the androgen regulation of the ocular secretory immune system. The Journal of Steroid Biochemistry, 1988, 30, 429-433.	1.3	26
128	T cell populations in the lacrimal gland during aging. Acta Ophthalmologica, 1988, 66, 490-497.	0.6	13
129	Hormonal modulation of tear volume in the rat. Experimental Eye Research, 1986, 42, 131-139.	1.2	52
130	Estradiol and Progesterone Regulation of Immunoglobulin A and G and Secretory Component in Cervicovaginal Secretions of the Rat 1. Biology of Reproduction, 1985, 32, 90-95.	1.2	98
131	The ocular secretory immune system of the rat. Experimental Eye Research, 1985, 40, 231-238.	1.2	42
132	Hormonal Regulation of Immunoglobulins in the Rat Uterus: Uterine Response to Multiple Estradiol Treatments*. Endocrinology, 1984, 114, 650-658.	1.4	61
133	Variations in the levels of secretory component in human uterine fluid during the menstrual cycle. The Journal of Steroid Biochemistry, 1984, 20, 509-513.	1.3	62
134	Epithelial cell involvement in the estradiol-stimulated accumulation of IgA in the rat uterus. The Journal of Steroid Biochemistry, 1983, 19, 469-474.	1.3	16
135	ESTROGEN-MEDIATED CONTROL OF THE SECRETORY IMMUNE SYSTEM IN THE UTERUS OF THE RAT. Annals of the New York Academy of Sciences, 1983, 409, 534-551.	1.8	30
136	ESTRADIOL REGULATION OF SECRETORY COMPONENT IN THE RAT UTERUS. Annals of the New York Academy of Sciences, 1983, 409, 882-884.	1.8	7
137	Hormonal Regulation of Immunoglobulins in the Rat Uterus: Uterine Response to a Single Estradiol Treatment*. Endocrinology, 1983, 112, 260-268.	1.4	56
138	EPITHELIAL CELL INVOLVEMENT IN THE ESTRADIOL-STIMULATED ACCUMULATION OF Iga in the Rat uterus. , 1983, , 469-474.		0
139	Effect of Estradiol and Progesterone on the Secretory Immune System in the Female Genital Tract. Advances in Experimental Medicine and Biology, 1982, 138, 99-111.	0.8	15
140	Cellular aspects of the rat uterine IgA response to estradiol and progesterone. The Journal of Steroid Biochemistry, 1980, 12, 451-459.	1.3	53