Gordon B Mcfiggans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034988/publications.pdf Version: 2024-02-01

	20036	19470
19,378	63	122
citations	h-index	g-index
322	322	11678
docs citations	times ranked	citing authors
	19,378 citations 322 docs citations	19,378 citations 322 docs citations 20036 63 h-index 322 322 times ranked

#	Article	IF	CITATIONS
1	Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 432.	0.8	401
2	Characterisation of the Manchester Aerosol Chamber facility. Atmospheric Measurement Techniques, 2022, 15, 539-559.	1.2	14
3	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
4	The effect of BC on aerosol–boundary layer feedback: potential implications for urban pollution episodes. Atmospheric Chemistry and Physics, 2022, 22, 2937-2953.	1.9	11
5	On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmospheric Chemistry and Physics, 2022, 22, 4149-4166.	1.9	4
6	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	1.6	42
7	Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon. Faraday Discussions, 2021, 226, 239-254.	1.6	5
8	Using a coupled LES aerosol–radiation model to investigate the importance of aerosol–boundary layer feedback in a Beijing haze episode. Faraday Discussions, 2021, 226, 173-190.	1.6	3
9	PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers. Geoscientific Model Development, 2021, 14, 675-702.	1.3	9
10	Chemical characterisation of benzene oxidation products under high- and low-NO _{<i>x</i>} conditions using chemical ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 3473-3490.	1.9	16
11	Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors. Atmospheric Chemistry and Physics, 2021, 21, 11303-11316.	1.9	7
12	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	1.9	13
13	Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273.	1.9	20
14	The Impact of Acute Diesel Exhaust Exposure on Executive Brain Function. Journal of Vision, 2021, 21, 2562.	0.1	0
15	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nature Geoscience, 2021, 14, 77-84.	5.4	94
16	Chemical Characterization and Source Apportionment of Organic Aerosols in the Coastal City of Chennai, India: Impact of Marine Air Masses on Aerosol Chemical Composition and Potential for Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 3197-3209.	1.2	12
17	Planetary Boundary Layer Height Modulates Aerosol—Water Vapor Interactions During Winter in the Megacity of Delhi. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035681.	1.2	4
18	Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa. Combustion Science and Technology, 2020, 192, 1582-1602.	1.2	22

#	Article	IF	CITATIONS
19	Global and regional model simulations of atmospheric ammonia. Atmospheric Research, 2020, 234, 104702.	1.8	13
20	Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models. Atmospheric Environment, 2020, 240, 117784.	1.9	16
21	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	1.9	74
22	Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics. Atmospheric Chemistry and Physics, 2020, 20, 515-537.	1.9	78
23	Mitigation of PM _{2.5} and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period. Atmospheric Chemistry and Physics, 2020, 20, 499-514.	1.9	52
24	PyCHAM: CHemistry with Aerosol Microphysics in Python. Journal of Open Source Software, 2020, 5, 1918.	2.0	5
25	Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions. Atmospheric Chemistry and Physics, 2020, 20, 11893-11906.	1.9	7
26	Investigating the behaviour of the CRI-MECH gas-phase chemistry scheme on a regional scale for different seasons using the WRF-Chem model. Atmospheric Research, 2019, 229, 145-156.	1.8	5
27	A Large Source of Atomic Chlorine From ClNO ₂ Photolysis at a U.K. Landfill Site. Geophysical Research Letters, 2019, 46, 8508-8516.	1.5	11
28	Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 2019, 565, 587-593.	13.7	222
29	A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application. Atmospheric Measurement Techniques, 2019, 12, 1429-1439.	1.2	42
30	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	1.9	95
31	Readily Mixed Atmospheric Organic Particles. CheM, 2018, 4, 399-401.	5.8	4
32	The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2018, 18, 9393-9409.	1.9	5
33	Competition for water vapour results in suppression of ice formation in mixed-phase clouds. Atmospheric Chemistry and Physics, 2018, 18, 7237-7250.	1.9	4
34	Measured particle water uptake enhanced by co-condensing vapours. Atmospheric Chemistry and Physics, 2018, 18, 14925-14937.	1.9	7
35	The influence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements. Atmospheric Environment, 2018, 195, 141-148.	1.9	23
36	A parameterisation for the co-condensation of semi-volatile organics into multiple aerosol particle modes. Geoscientific Model Development, 2018, 11, 3261-3278.	1.3	5

#	Article	IF	CITATIONS
37	Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. Atmospheric Chemistry and Physics, 2018, 18, 11073-11096.	1.9	21
38	Mixing State of Carbonaceous Aerosols of Primary Emissions from "Improved―African Cookstoves. Environmental Science & Technology, 2018, 52, 10134-10143.	4.6	18
39	Black-carbon absorption enhancement in the atmosphere determined by particle mixingÂstate. Nature Geoscience, 2017, 10, 184-188.	5.4	303
40	Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China. Atmospheric Chemistry and Physics, 2017, 17, 5205-5219.	1.9	29
41	An efficient approach for treating composition-dependent diffusion within organic particles. Atmospheric Chemistry and Physics, 2017, 17, 10477-10494.	1.9	6
42	Equilibrium absorptive partitioning theory between multiple aerosol particle modes. Geoscientific Model Development, 2016, 9, 3617-3637.	1.3	0
43	Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results. Geoscientific Model Development, 2016, 9, 3875-3906.	1.3	8
44	UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations. Geoscientific Model Development, 2016, 9, 899-914.	1.3	78
45	Timescales of mixing and of chemistry: general discussion. Faraday Discussions, 2016, 189, 253-276.	1.6	0
46	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	1.6	1
47	Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.	1.6	0
48	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	1.5	182
49	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	1.6	1
50	Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. Atmospheric Chemistry and Physics, 2016, 16, 9727-9743.	1.9	37
51	The rate of equilibration of viscous aerosol particles. Atmospheric Chemistry and Physics, 2016, 16, 5299-5313.	1.9	35
52	Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution. Atmospheric Chemistry and Physics, 2016, 16, 5573-5594.	1.9	52
53	Influence of aerosol chemical composition on N ₂ O ₅ uptake: airborne regional measurements in northwestern Europe. Atmospheric Chemistry and Physics, 2015, 15, 973-990.	1.9	66
54	WRF-Chem model predictions of the regional impacts of N ₂ O ₅ heterogeneous processes on night-time chemistry over north-western Europe. Atmospheric Chemistry and Physics, 2015, 15, 1385-1409.	1.9	38

#	Article	IF	CITATIONS
55	Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires. Atmospheric Chemistry and Physics, 2015, 15, 3077-3095.	1.9	61
56	Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. Atmospheric Chemistry and Physics, 2015, 15, 8077-8100.	1.9	10
57	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	1.9	58
58	lodine observed in new particle formation events in the Arctic atmosphere during ACCACIA. Atmospheric Chemistry and Physics, 2015, 15, 5599-5609.	1.9	102
59	Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol. Geoscientific Model Development, 2015, 8, 549-577.	1.3	47
60	ManUniCast: a real-time weather and air-quality forecasting portal and app for teaching. Weather, 2015, 70, 180-186.	0.6	12
61	Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products. Physical Chemistry Chemical Physics, 2015, 17, 32194-32203.	1.3	36
62	Green heating plan threatens air quality. Nature, 2015, 517, 21-21.	13.7	5
63	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	23.0	196
64	A marine biogenic source of atmospheric ice-nucleating particles. Nature, 2015, 525, 234-238.	13.7	475
65	Under-Deposit Chloride-Induced Stress Corrosion Cracking in Austenitic Stainless Steels: Aspects Associated with Deposit Type, Size and Composition. ECS Transactions, 2014, 58, 25-39.	0.3	8
66	Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. Geoscientific Model Development, 2014, 7, 2557-2579.	1.3	51
67	Investigation into composition and deposition of artificially produced marine aerosols on austenitic stainless steels. Corrosion Engineering Science and Technology, 2014, 49, 509-513.	0.7	8
68	Involatile particles from rapid oxidation. Nature, 2014, 506, 442-443.	13.7	10
69	Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards. Analytical Chemistry, 2014, 86, 11238-11245.	3.2	17
70	An investigation into the performance of four cloud droplet activation parameterisations. Geoscientific Model Development, 2014, 7, 1535-1542.	1.3	27
71	An assessment of vapour pressure estimation methods. Physical Chemistry Chemical Physics, 2014, 16, 19453-19469.	1.3	63
72	Factors determining the most efficient spray distribution for marine cloud brightening. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20140056.	1.6	14

#	Article	IF	CITATIONS
73	Organic aerosol emission ratios from the laboratory combustion of biomass fuels. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,850.	1.2	31
74	Composition of 15–85 nm particles in marine air. Atmospheric Chemistry and Physics, 2014, 14, 11557-11569.	1.9	39
75	A meta-analysis of particle water uptake reconciliation studies. Atmospheric Chemistry and Physics, 2014, 14, 11833-11841.	1.9	30
76	A parameterisation for the activation of cloud drops including the effects of semi-volatile organics. Atmospheric Chemistry and Physics, 2014, 14, 2289-2302.	1.9	8
77	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. Atmospheric Chemistry and Physics, 2014, 14, 12781-12801.	1.9	27
78	Assessing the risk of under-deposit chloride-induced stress corrosion cracking in austenitic stainless steel nuclear waste containers. Corrosion Engineering Science and Technology, 2014, 49, 529-534.	0.7	30
79	Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Faraday Discussions, 2013, 165, 45.	1.6	103
80	Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic–organic aerosol particles. Faraday Discussions, 2013, 165, 273.	1.6	26
81	Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science. Journal of Physical Chemistry A, 2013, 117, 3428-3441.	1.1	16
82	Cloud droplet number enhanced by co-condensation of organic vapours. Nature Geoscience, 2013, 6, 443-446.	5.4	105
83	Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmospheric Chemistry and Physics, 2013, 13, 2015-2029.	1.9	152
84	Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest. Atmospheric Chemistry and Physics, 2013, 13, 11295-11305.	1.9	15
85	Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs. Atmospheric Chemistry and Physics, 2013, 13, 11769-11789.	1.9	50
86	Partial Derivative Fitted Taylor Expansion: an efficient method for calculating gas/liquid equilibria in atmospheric aerosol particles – Part 2: Organic compounds. Geoscientific Model Development, 2012, 5, 1-13.	1.3	14
87	A modeling approach to evaluate the uncertainty in estimating the evaporation behaviour and volatility of organic aerosols. Atmospheric Measurement Techniques, 2012, 5, 735-757.	1.2	17
88	Development and chamber evaluation of the MCM v3.2 degradation scheme for $\hat{1}^2$ -caryophyllene. Atmospheric Chemistry and Physics, 2012, 12, 5275-5308.	1.9	110
89	The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of Î ² -caryophyllene secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 6417-6436.	1.9	76
90	Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmospheric Chemistry and Physics, 2012, 12, 3253-3260.	1.9	78

#	Article	IF	CITATIONS
91	Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & amp; Technology, 2012, 46, 13093-13102.	4.6	109
92	A Significant Role for Nitrate and Peroxide Groups on Indoor Secondary Organic Aerosol. Environmental Science & Technology, 2012, 46, 9290-9298.	4.6	50
93	Atmospheric Chemistry of Iodine. Chemical Reviews, 2012, 112, 1773-1804.	23.0	482
94	Surfactant effects in global simulations of cloud droplet activation. Geophysical Research Letters, 2012, 39, .	1.5	51
95	Particle fluxes and condensational uptake over sea ice during COBRA. Journal of Geophysical Research, 2012, 117, .	3.3	4
96	The role of ortho, meta, para isomerism in measured solid state and derived sub-cooled liquid vapour pressures of substituted benzoic acids. RSC Advances, 2012, 2, 4430.	1.7	23
97	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics, 2011, 11, 1039-1050.	1.9	152
98	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 2011, 11, 12109-12136.	1.9	421
99	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
100	On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 2: Composition, hygroscopicity and cloud condensation activity. Atmospheric Chemistry and Physics, 2011, 11, 2585-2602.	1.9	106
101	Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11, 5099-5112.	1.9	101
102	Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments. Atmospheric Chemistry and Physics, 2011, 11, 5917-5929.	1.9	44
103	Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids. Atmospheric Chemistry and Physics, 2011, 11, 655-665.	1.9	48
104	Investigating organic aerosol loading in the remote marine environment. Atmospheric Chemistry and Physics, 2011, 11, 8847-8860.	1.9	54
105	Source attribution of Bornean air masses by back trajectory analysis during the OP3 project. Atmospheric Chemistry and Physics, 2011, 11, 9605-9630.	1.9	35
106	Modelling multi-phase halogen chemistry in the coastal marine boundary layer: investigation of the relative importance of local chemistry vs. long-range transport. Atmospheric Chemistry and Physics, 2011, 11, 979-994.	1.9	5
107	Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. Atmospheric Chemistry and Physics, 2011, 11, 11157-11174.	1.9	34
108	The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties – Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation. Atmospheric Chemistry and Physics, 2011, 11, 13145-13159.	1.9	20

#	Article	IF	CITATIONS
109	The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties – Part 2: Determination of particle hygroscopicity and its dependence on "apparent" volatility. Atmospheric Chemistry and Physics, 2011, 11, 7767-7779.	1.9	30
110	New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmospheric Chemistry and Physics, 2011, 11, 9155-9206.	1.9	317
111	<i>In situ</i> aerosol measurements taken during the 2007 COPS field campaign at the Hornisgrinde ground site. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 252-266.	1.0	8
112	Primary Marine Aerosol Fluxes. Bulletin of the American Meteorological Society, 2011, 92, 489-491.	1.7	3
113	Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems. Atmospheric Measurement Techniques, 2011, 4, 485-497.	1.2	52
114	The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties – Part 1: A systematic evaluation of some available estimation techniques. Atmospheric Chemistry and Physics, 2010, 10, 10255-10272.	1.9	45
115	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmospheric Chemistry and Physics, 2010, 10, 1031-1055.	1.9	66
116	Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmospheric Chemistry and Physics, 2010, 10, 11737-11752.	1.9	60
117	Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff. Atmospheric Chemistry and Physics, 2010, 10, 11823-11838.	1.9	34
118	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
119	Linking urban aerosol fluxes in street canyons to larger scale emissions. Atmospheric Chemistry and Physics, 2010, 10, 2475-2490.	1.9	4
120	Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation. Atmospheric Chemistry and Physics, 2010, 10, 255-266.	1.9	17
121	Widening the gap between measurement and modelling of secondary organic aerosol properties?. Atmospheric Chemistry and Physics, 2010, 10, 2577-2593.	1.9	60
122	Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmospheric Chemistry and Physics, 2010, 10, 2975-2999.	1.9	125
123	Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. Atmospheric Chemistry and Physics, 2010, 10, 3189-3203.	1.9	112
124	Measurements of iodine monoxide at a semi polluted coastal location. Atmospheric Chemistry and Physics, 2010, 10, 3645-3663.	1.9	19
125	Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 4611-4624.	1.9	161
126	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	1.9	5

#	Article	IF	CITATIONS
127	Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia. Atmospheric Chemistry and Physics, 2010, 10, 9369-9382.	1.9	41
128	Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed. Atmospheric Chemistry and Physics, 2010, 10, 6237-6254.	1.9	60
129	The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol. Atmospheric Chemistry and Physics, 2010, 10, 749-767.	1.9	135
130	On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 1: Source fluxes. Atmospheric Chemistry and Physics, 2010, 10, 9295-9317.	1.9	109
131	Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmospheric Measurement Techniques, 2010, 3, 141-162.	1.2	142
132	The Influence of Algal Exudate on the Hygroscopicity of Sea Spray Particles. Advances in Meteorology, 2010, 2010, 1-11.	0.6	16
133	Instrumentational operation and analytical methodology for the reconciliation of aerosol water uptake under sub- and supersaturated conditions. Atmospheric Measurement Techniques, 2010, 3, 1241-1254.	1.2	42
134	Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry. Atmospheric Chemistry and Physics, 2010, 10, 4879-4892.	1.9	79
135	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	1.9	352
136	Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations. Geophysical Research Letters, 2010, 37, .	1.5	71
137	Quantifying the contribution of marine organic gases to atmospheric iodine. Geophysical Research Letters, 2010, 37, .	1.5	105
138	Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS) system for vapour pressure measurements of low volatility organics. Atmospheric Measurement Techniques, 2009, 2, 355-361.	1.2	54
139	Intercomparison study of six HTDMAs: results and recommendations. Atmospheric Measurement Techniques, 2009, 2, 363-378.	1.2	125
140	High bromine oxide concentrations in the semi-polluted boundary layer. Atmospheric Environment, 2009, 43, 3811-3818.	1.9	30
141	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	1.9	160
142	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
143	Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gasâ€liquid equilibria in atmospheric aerosol particles: 1. Inorganic compounds. Journal of Geophysical Research, 2009, 114, .	3.3	18
144	Inversion of tandem differential mobility analyser (TDMA) measurements. Journal of Aerosol Science, 2009, 40, 134-151.	1.8	273

#	Article	IF	CITATIONS
145	Reactive iodine species in a semiâ€polluted environment. Geophysical Research Letters, 2009, 36, .	1.5	73
146	Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions. Physical Chemistry Chemical Physics, 2009, 11, 8021.	1.3	50
147	lodine dioxide nucleation simulations in coastal and remote marine environments. Journal of Geophysical Research, 2009, 114, .	3.3	29
148	A comparison between trajectory ensemble and adiabatic parcel modeled cloud properties and evaluation against airborne measurements. Journal of Geophysical Research, 2009, 114, .	3.3	23
149	Direct linkage between tidally driven coastal ozone deposition fluxes, particle emission fluxes, and subsequent CCN formation. Geophysical Research Letters, 2009, 36, .	1.5	42
150	Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 721-732.	1.9	118
151	Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water. Atmospheric Chemistry and Physics, 2009, 9, 2919-2932.	1.9	50
152	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	1.9	3,486
153	Modelling multi-phase halogen chemistry in the remote marine boundary layer: investigation of the influence of aerosol size resolution on predicted gas- and condensed-phase chemistry. Atmospheric Chemistry and Physics, 2009, 9, 4559-4573.	1.9	25
154	Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates. Atmospheric Chemistry and Physics, 2009, 9, 9299-9314.	1.9	58
155	Cloud forming potential of secondary organic aerosol under near atmospheric conditions. Geophysical Research Letters, 2008, 35, .	1.5	145
156	Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios. Journal of Geophysical Research, 2008, 113, .	3.3	238
157	Comparative Thermodynamic Studies of Aqueous Glutaric Acid, Ammonium Sulfate and Sodium Chloride Aerosol at High Humidity. Journal of Physical Chemistry A, 2008, 112, 9413-9422.	1.1	56
158	The Kelvin versus the Raoult Term in the Köhler Equation. Journals of the Atmospheric Sciences, 2008, 65, 4004-4016.	0.6	55
159	lodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6954-6958.	3.3	318
160	Free radical modelling studies during the UK TORCH Campaign in Summer 2003. Atmospheric Chemistry and Physics, 2007, 7, 167-181.	1.9	151
161	Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions. Atmospheric Chemistry and Physics, 2007, 7, 2371-2398.	1.9	85
162	Latitudinal aerosol size distribution variation in the Eastern Atlantic Ocean measured aboard the FS-Polarstern. Atmospheric Chemistry and Physics, 2007, 7, 2563-2573.	1.9	35

#	Article	IF	CITATIONS
163	Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmospheric Chemistry and Physics, 2007, 7, 6131-6144.	1.9	273
164	Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions. Atmospheric Chemistry and Physics, 2007, 7, 2949-2971.	1.9	44
165	Seasonal Variation of NOx Loss Processes Coupled to the HNO3 Formation in a Daytime Urban Atmosphere: A Model Study. Water, Air, and Soil Pollution, 2007, 182, 197-206.	1.1	17
166	Contrasting Organic Aerosol Behaviour in Continental Polluted, Biomass Burning and Pristine Tropical Forest Environments. , 2007, , 721-725.		0
167	The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 2006, 6, 2593-2649.	1.9	690
168	OH and HO ₂ chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake. Atmospheric Chemistry and Physics, 2006, 6, 1135-1153.	1.9	82
169	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	1.9	65
170	Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX. Atmospheric Chemistry and Physics, 2006, 6, 3289-3301.	1.9	47
171	Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK. Atmospheric Chemistry and Physics, 2006, 6, 403-418.	1.9	170
172	The characterisation of pollution aerosol in a changing photochemical environment. Atmospheric Chemistry and Physics, 2006, 6, 5573-5588.	1.9	55
173	Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmospheric Chemistry and Physics, 2006, 6, 883-895.	1.9	138
174	A curved multi-component aerosol hygroscopicity model framework: Part 2 – Including organic compounds. Atmospheric Chemistry and Physics, 2005, 5, 1223-1242.	1.9	171
175	A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds. Atmospheric Chemistry and Physics, 2005, 5, 1205-1222.	1.9	244
176	Marine aerosols and iodine emissions. Nature, 2005, 433, E13-E13.	13.7	37
177	The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmospheric Environment, 2005, 39, 211-222.	1.9	152
178	Iodine and Halocarbon Response of Laminaria digitata to Oxidative Stress and Links to Atmospheric New Particle Production. Environmental Chemistry, 2005, 2, 282.	0.7	126
179	Simplification of the representation of the organic component of atmospheric particulates. Faraday Discussions, 2005, 130, 341.	1.6	118
180	Impact of halogen monoxide chemistry upon boundary layer OH and HO2concentrations at a coastal site. Geophysical Research Letters, 2005, 32, .	1.5	113

#	Article	IF	CITATIONS
181	Improved model predictions of HO2with gas to particle mass transfer rates calculated using aerosol number size distributions. Journal of Geophysical Research, 2005, 110, .	3.3	25
182	Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia. Atmospheric Environment, 2004, 38, 2111-2123.	1.9	91
183	Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine. Atmospheric Chemistry and Physics, 2004, 4, 701-713.	1.9	252
184	Active chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species. Journal of Geophysical Research, 2002, 107, ACH 10-1.	3.3	63
185	Observations of OIO in the remote marine boundary layer. Geophysical Research Letters, 2001, 28, 1945-1948.	1.5	83
186	Ozone Dry Deposition Velocities for Coastal Waters. Water, Air and Soil Pollution, 2001, 1, 233-242.	0.8	12
187	Ozone Dry Deposition Velocities for Coastal Waters. , 2001, , 233-242.		0
188	CHEMICAL AND PHYSICAL PROPERTIES OF AEROSOL ON THE KOREAN ISLAND OF CHEJU DURING ACE-ASIA. Journal of Aerosol Science, 2001, 32, 351-352.	1.8	2
189	AEROSOL PROCESSING IN POLLUTED PLUMES – A REANALYSIS OF DATA FROM FIELD PROJECTS IN SEVERAL LOCATIONS. Journal of Aerosol Science, 2001, 32, 349-350.	1.8	0
190	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 750-778.	0.8	44
191	New particle formation at a rural site in the UK. AIP Conference Proceedings, 2000, , .	0.3	0
192	Behavior of ultrafine particles in continental and marine air masses at a rural site in the United Kingdom. Journal of Geophysical Research, 2000, 105, 26891-26905.	3.3	28
193	The nitrate radical in the remote marine boundary layer. Journal of Geophysical Research, 2000, 105, 24191-24204.	3.3	95
194	Aerosol Development and Interaction in an Urban Plume. Aerosol Science and Technology, 2000, 32, 120-126.	1.5	28
195	Distribution and sea-air fluxes of biogenic trace gases in the eastern Atlantic Ocean. Global Biogeochemical Cycles, 2000, 14, 871-886.	1.9	85
196	A modeling study of iodine chemistry in the marine boundary layer. Journal of Geophysical Research, 2000, 105, 14371-14385.	3.3	252
197	Observations of iodine monoxide in the remote marine boundary layer. Journal of Geophysical Research, 2000, 105, 14363-14369.	3.3	160
198	On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 1999, 26, 1707-1710.	1.5	197