Abdelbast

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034691/publications.pdf

Version: 2024-02-01

42 papers

1,918 citations

257450 24 h-index 265206 42 g-index

42 all docs 42 docs citations

42 times ranked 3000 citing authors

#	Article	IF	CITATIONS
1	A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 18919-18932.	10.3	235
2	Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. International Journal of Energy Research, 2016, 40, 1032-1049.	4. 5	226
3	In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. Journal of Power Sources, 2016, 319, 247-254.	7.8	118
4	Compatibility of <i>N</i> -Methyl- <i>N</i> -propylpyrrolidinium Cation Room-Temperature Ionic Liquid Electrolytes and Graphite Electrodes. Journal of Physical Chemistry C, 2008, 112, 16708-16713.	3.1	115
5	Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy. Nano Letters, 2020, 20, 1607-1613.	9.1	85
6	Lithium battery with solid polymer electrolyte based on comb-like copolymers. Journal of Power Sources, 2015, 279, 372-383.	7.8	77
7	Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries. Journal of Power Sources, 2019, 436, 226852.	7.8	61
8	Solidâ€State Synthesis of 70 nm Li ₄ Ti ₅ O ₁₂ Particles by Mechanically Activating Intermediates with Amino Acids. Journal of the American Ceramic Society, 2008, 91, 1522-1527.	3.8	54
9	Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy, 2015, 16, 256-267.	16.0	54
10	Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO ₄ with Ca ²⁺ . Nano Letters, 2016, 16, 2692-2697.	9.1	52
11	In situ observation of solid electrolyte interphase evolution in a lithium metal battery. Communications Chemistry, 2019, 2, .	4.5	52
12	Understanding the Reactivity of a Thin Li _{1.5} 6 _{1.5} 6 _{1.5} 6 ₄ 338 Solidâ€State Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	19.5	49
13	Discovering the Influence of Lithium Loss on Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte Phase Stability. ACS Applied Energy Materials, 2020, 3, 3415-3424.	5.1	49
14	Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries. Electrochemistry Communications, 2019, 104, 106483.	4.7	46
15	Direct observation of lithium metal dendrites with ceramic solid electrolyte. Scientific Reports, 2020, 10, 18410.	3.3	45
16	Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. Journal of Power Sources, 2016, 301, 35-40.	7.8	44
17	Ultra-low cost and highly stable hydrated FePO 4 anodes for aqueous sodium-ion battery. Journal of Power Sources, 2018, 374, 211-216.	7.8	44
18	The Role of Metal Disulfide Interlayer in Li–S Batteries. Journal of Physical Chemistry C, 2018, 122, 1014-1023.	3.1	40

#	Article	IF	Citations
19	A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries. Journal of Power Sources, 2019, 427, 201-206.	7.8	36
20	High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO ₄ Anode. ACS Applied Materials & Interfaces, 2018, 10, 7061-7068.	8.0	34
21	High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries. Materials, 2018, 11, 1294.	2.9	34
22	Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical Conditions. Advanced Functional Materials, 2021, 31, 2102765.	14.9	32
23	Largeâ€Area Electrochromic Devices on Flexible Polymer Substrates with High Optical Contrast and Enhanced Cycling Stability. Advanced Materials Technologies, 2021, 6, 2000836.	5.8	30
24	Effect of heat-treatment and additives on the particles and carbon fibers as anodes for lithium-ion batteries. Journal of Power Sources, 2002, 108, 86-96.	7.8	28
25	Review—Li-Ion Photo-Batteries: Challenges and Opportunities. Journal of the Electrochemical Society, 2020, 167, 120545.	2.9	26
26	Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles. Journal of Power Sources, 2015, 299, 529-536.	7.8	24
27	Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries. Journal of Power Sources, 2018, 378, 516-521.	7.8	24
28	Enhancing the electrochemical performance of an O3–NaCrO2 cathode in sodium-ion batteries by cation substitution. Journal of Power Sources, 2019, 435, 226760.	7.8	24
29	Facile Protection of Lithium Metal for Allâ€Solidâ€State Batteries. ChemistryOpen, 2019, 8, 192-195.	1.9	21
30	Redox Behaviors of Ni and Cr with Different Counter Cations in Spinel Cathodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A770.	2.9	20
31	Aqueous Synthesized Nanostructured Li ₄ Ti ₅ O ₁₂ for High-Performance Lithium Ion Battery Anodes. Journal of the Electrochemical Society, 2013, 160, A3041-A3047.	2.9	19
32	Amphiphilic latex as a water-based binder for LiFePO4 cathode. Journal of Power Sources, 2019, 415, 172-178.	7.8	18
33	Toward an Allâ€Ceramic Cathode–Electrolyte Interface with Lowâ€Temperature Pressed NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Electrolyte. Advanced Materials Interfaces, 2020, 7, 2000164.	3.7	17
34	Unveiling the Cation Exchange Reaction between the NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte and the pyr13TFSI Ionic Liquid. Journal of the American Chemical Society, 2022, 144, 3442-3448.	13.7	15
35	Evaluation of lithium ion cells with titanate negative electrodes and iron phosphate positive electrode for start–stop applications. Journal of Power Sources, 2014, 256, 288-293.	7.8	14
36	Power capability of LiTDI-based electrolytes for lithium-ion batteries. Journal of Power Sources, 2015, 294, 507-515.	7.8	14

#	Article	IF	CITATIONS
37	Determination of the electrochemical performance and stability of the lithium-salt, lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide, with various anodes in Li-ion cells. Journal of Power Sources, 2015, 299, 309-314.	7.8	12
38	Synthesis and characterization of a new family of aryl-trifluoromethanesulfonylimide Li-Salts for Li-ion batteries and beyond. Journal of Power Sources, 2015, 293, 78-88.	7.8	11
39	Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 81-86.	3.5	11
40	Silylated quaternary ammonium salts $\hat{a} \in \hat{a}$ ionic liquids with hydrophobic cations. Journal of Materials Chemistry A, 2014, 2, 15964-15971.	10.3	5
41	Lithium Anodes: Understanding the Reactivity of a Thin Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solidâ€5tate Electrolyte toward Metallic Lithium Anode (Adv. Energy Mater. 32/2020). Advanced Energy Materials, 2020. 10. 2070136.	19.5	2
42	Hot Press Method: Toward an Allâ€Ceramic Cathode–Electrolyte Interface with Lowâ€Temperature Pressed NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Electrolyte (Adv. Mater. Interfaces 12/2020). Advanced Materials Interfaces, 2020, 7, 2070069.	3.7	1