Gabriella Marisa Leonarduzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4â€Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Medicinal Research Reviews, 2008, 28, 569-631.	5.0	376
2	The lipid peroxidation end product 4â€hydroxyâ€2,3â€nonenal upâ€regulates transforming growth factor β1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis ¹ . FASEB Journal, 1997, 11, 851-857.	0.2	258
3	Oxysterols in the pathogenesis of major chronic diseases. Redox Biology, 2013, 1, 125-130.	3.9	236
4	Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxidants and Redox Signaling, 2013, 19, 1711-1747.	2.5	207
5	Vitamin E dietary supplementation protects against carbon tetrachloride—induced chronic liver damage and cirrhosis. Hepatology, 1992, 16, 1014-1021.	3.6	203
6	Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biology, 2016, 10, 24-33.	3.9	192
7	Lipid oxidation products in cell signaling. Free Radical Biology and Medicine, 2000, 28, 1370-1378.	1.3	186
8	Nuclear Factor kB Is Activated by Arachidonic Acid but Not by Eicosapentaenoic Acid. Biochemical and Biophysical Research Communications, 1996, 229, 643-647.	1.0	173
9	Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects (review). Journal of Nutritional Biochemistry, 2002, 13, 700-710.	1.9	161
10	On the role of lipid peroxidation in the pathogenesis of liver damage induced by long-standing cholestasis. Free Radical Biology and Medicine, 1996, 20, 351-359.	1.3	155
11	4-Hydroxynonenal–protein adducts: A reliable biomarker of lipid oxidation in liver diseases. Molecular Aspects of Medicine, 2008, 29, 67-71.	2.7	141
12	Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 119.	1.7	135
13	4-Hydroxynonenal and cholesterol oxidation products in atherosclerosis. Molecular Nutrition and Food Research, 2005, 49, 1044-1049.	1.5	132
14	Design and Development of Nanovehicle-Based Delivery Systems for Preventive or Therapeutic Supplementation with Flavonoids. Current Medicinal Chemistry, 2010, 17, 74-95.	1.2	126
15	Vitamin E dietary supplementation inhibits transforming growth factor β1 gene expression in the rat liver. FEBS Letters, 1992, 308, 267-270.	1.3	125
16	Signaling kinases modulated by 4-hydroxynonenal. Free Radical Biology and Medicine, 2004, 37, 1694-1702.	1.3	124
17	Cholesterol Oxidation Products and Disease: An Emerging Topic of Interest in Medicinal Chemistry. Current Medicinal Chemistry, 2009, 16, 685-705.	1.2	121
18	Polyphenol Supplementation as a Complementary Medicinal Approach to Treating Inflammatory Bowel Disease. Current Medicinal Chemistry, 2011, 18, 4851-4865.	1.2	121

#	Article	IF	CITATIONS
19	Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Molecular Aspects of Medicine, 2009, 30, 180-189.	2.7	112
20	Relation between TLR4/NFâ€IºB signaling pathway activation by 27â€hydroxycholesterol and 4â€hydroxynonenal, and atherosclerotic plaque instability. Aging Cell, 2015, 14, 569-581.	3.0	110
21	The link between altered cholesterol metabolism and Alzheimer's disease. Annals of the New York Academy of Sciences, 2012, 1259, 54-64.	1.8	108
22	Oxysterol mixtures prevent proapoptotic effects of 7―ketocholesterol in macrophages: implications for proatherogenic gene modulation. FASEB Journal, 2004, 18, 693-695.	0.2	95
23	Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Scientific Reports, 2014, 4, 7487.	1.6	95
24	Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells. Carcinogenesis, 1994, 15, 1359-1364.	1.3	93
25	Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radical Biology and Medicine, 2012, 52, 19-34.	1.3	90
26	Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radical Biology and Medicine, 2010, 48, 47-54.	1.3	89
27	Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer's disease: three partners in crime. Aging Cell, 2011, 10, 403-417.	3.0	85
28	Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. European Journal of Lipid Science and Technology, 2019, 121, 1700047.	1.0	81
29	Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS ONE, 2014, 9, e96795.	1.1	80
30	Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. Free Radical Biology and Medicine, 2005, 39, 1152-1161.	1.3	76
31	Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. , 2010, 128, 336-374.		72
32	Wine consumption and intestinal redox homeostasis. Redox Biology, 2014, 2, 795-802.	3.9	68
33	The role of oxysterols in vascular ageing. Journal of Physiology, 2016, 594, 2095-2113.	1.3	67
34	Pro-oxidant and proapoptotic effects of cholesterol oxidation products on human colonic epithelial cells: A potential mechanism of inflammatory bowel disease progression. Free Radical Biology and Medicine, 2009, 47, 1731-1741.	1.3	66
35	Upâ€regulation of the fibrogenic cytokine TGFâ€Î²1 by oxysterols: a mechanistic link between cholesterol and atherosclerosis. FASEB Journal, 2001, 15, 1619-1621.	0.2	65
36	Early Involvement of ROS Overproduction in Apoptosis Induced by 7-Ketocholesterol. Antioxidants and Redox Signaling, 2006, 8, 375-380.	2.5	65

#	Article	IF	CITATIONS
37	Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte-like cells: effective protection by epigallocatechin-3-gallate. Free Radical Biology and Medicine, 2010, 49, 2049-2057.	1.3	63
38	Implication of oxysterols in chronic inflammatory human diseases. Biochimie, 2018, 153, 220-231.	1.3	63
39	Biogenic 4â€hydroxyâ€2â€nonenal activates transcription factor APâ€1 but not NFâ€îºB in cells of the macrophag lineage. BioFactors, 1997, 6, 173-179.	ge 2.6	62
40	Induction of Procollagen Type I Gene Expression and Synthesis in Human Hepatic Stellate Cells by 4-Hydroxy-2,3-Nonenal and Other 4-Hydroxy-2,3-Alkenals Is Related to Their Molecular Structure. Biochemical and Biophysical Research Communications, 1996, 222, 261-264.	1.0	59
41	Calorie restriction protects against ageâ€related rat aorta sclerosis. FASEB Journal, 2005, 19, 1863-1865.	0.2	53
42	c-Jun N-terminal kinase upregulation as a key event in the proapoptotic interaction between transforming growth factor-I²1 and 4-hydroxynonenal in colon mucosa. Free Radical Biology and Medicine, 2006, 41, 443-454.	1.3	53
43	Upâ€regulation of βâ€amyloidogenesis in neuronâ€like human cells by both 24―and 27â€hydroxycholesterol: protective effect of <i>N</i> â€acetylâ€cysteine. Aging Cell, 2014, 13, 561-572.	3.0	52
44	A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 556.	1.4	48
45	Plaque oxysterols induce unbalanced up-regulation of matrix metalloproteinase-9 in macrophagic cells through redox-sensitive signaling pathways: Implications regarding the vulnerability of atherosclerotic lesions. Free Radical Biology and Medicine, 2011, 51, 844-855.	1.3	44
46	Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radical Biology and Medicine, 2017, 111, 140-150.	1.3	44
47	Oxidative Damage and Transforming Growth Factor β1 Expression in Pretumoral and Tumoral Lesions of Human Intestine. Free Radical Biology and Medicine, 1997, 22, 889-894.	1.3	43
48	The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food and Function, 2015, 6, 1218-1228.	2.1	43
49	Dietary lipids and their oxidized products in Alzheimer's disease. Molecular Nutrition and Food Research, 2011, 55, S161-72.	1.5	41
50	Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation. Free Radical Biology and Medicine, 2014, 77, 376-385.	1.3	38
51	Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochemical Pharmacology, 2013, 86, 138-145.	2.0	37
52	Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie, 2013, 95, 632-640.	1.3	36
53	Trojan horse-like behavior of a biologically representative mixture of oxysterols. Molecular Aspects of Medicine, 2004, 25, 155-167.	2.7	35
54	Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: A major role for lipocalin-2. Redox Biology, 2021, 39, 101837.	3.9	35

#	Article	IF	CITATIONS
55	New Insights into Redox-Modulated Cell Signaling. Current Pharmaceutical Design, 2011, 17, 3994-4006.	0.9	33
56	A silver lining for 24-hydroxycholesterol in Alzheimer's disease: The involvement of the neuroprotective enzyme sirtuin 1. Redox Biology, 2018, 17, 423-431.	3.9	33
57	The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants, 2021, 10, 740.	2.2	33
58	Oxidation as a crucial reaction for cholesterol to induce tissue degeneration: CD36 overexpression in human promonocytic cells treated with a biologically relevant oxysterol mixture. Aging Cell, 2008, 7, 375-382.	3.0	32
59	Oxysterols and mechanisms of survival signaling. Molecular Aspects of Medicine, 2016, 49, 8-22.	2.7	32
60	Liver AP-1 activation due to carbon tetrachloride is potentiated by 1,2-dibromoethane but is inhibited by α-tocopherol or gadolinium chloride. Free Radical Biology and Medicine, 1999, 26, 1108-1116.	1.3	31
61	Progressive Increase of Matrix Metalloprotease-9 and Interleukin-8 Serum Levels during Carcinogenic Process in Human Colorectal Tract. PLoS ONE, 2012, 7, e41839.	1.1	30
62	Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mechanisms of Ageing and Development, 2011, 132, 305-314.	2.2	28
63	Activation of the mitochondrial pathway of apoptosis by oxysterols. Frontiers in Bioscience - Landmark, 2007, 12, 791.	3.0	28
64	Molecular signaling operated by a dietâ€compatible mixture of oxysterols in upâ€regulating CD36 receptor in CD68 positive cells. Molecular Nutrition and Food Research, 2010, 54, S31-41.	1.5	27
65	Role of 4â€hydroxyâ€2,3â€nonenal in the pathogenesis of fibrosis. BioFactors, 2005, 24, 229-236.	2.6	23
66	The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells. Redox Biology, 2018, 17, 400-410.	3.9	23
67	Physiological amounts of ascorbate potentiate phorbol ester-induced nuclear-binding of AP-1 transcription factor in cells of macrophagic lineage. Free Radical Biology and Medicine, 2001, 31, 374-382.	1.3	22
68	Nrf2 antioxidant defense is involved in survival signaling elicited by 27-hydroxycholesterol in human promonocytic cells. Free Radical Biology and Medicine, 2016, 91, 93-104.	1.3	22
69	Metalloproteinases and Metalloproteinase Inhibitors in Age-Related Diseases. Current Pharmaceutical Design, 2014, 20, 2993-3018.	0.9	22
70	Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes?. Antioxidants, 2021, 10, 1890.	2.2	20
71	Expression and synthesis of TGF <i>β</i> 1 is induced in macrophages by 9â€oxononanoyl cholesterol, a major cholesteryl ester oxidation product. BioFactors, 2005, 24, 209-216.	2.6	19
72	Hepatocellular Metabolism of 4-Hydroxy-2,3-Nonenal Is Impaired in Conditions of Chronic Cholestasis. Biochemical and Biophysical Research Communications, 1995, 214, 669-675.	1.0	18

#	Article	IF	CITATIONS
73	Detection of Cytochrome P4503A (CYP3A) in Human Hepatic Stellate Cells. Biochemical and Biophysical Research Communications, 1997, 238, 420-424.	1.0	18
74	Potentiation of amyloid-β peptide neurotoxicity in human dental-pulp neuron-like cells by the membrane lipid peroxidation product 4-hydroxynonenal. Free Radical Biology and Medicine, 2012, 53, 1708-1717.	1.3	15
75	Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radical Biology and Medicine, 2018, 129, 354-363.	1.3	15
76	CCl4-induced increase of hepatocyte free arachidonate level: Pathogenesis and contribution to cell death. Chemico-Biological Interactions, 1990, 74, 195-206.	1.7	14
77	Modulation of hepatic fibrogenesis by antioxidants. Molecular Aspects of Medicine, 1993, 14, 259-264.	2.7	13
78	Molecular Signaling Involved in Oxysterol-Induced β1-Integrin Over-Expression in Human Macrophages. International Journal of Molecular Sciences, 2012, 13, 14278-14293.	1.8	12
79	Up-regulation of PCSK6 by lipid oxidation products: A possible role in atherosclerosis. Biochimie, 2021, 181, 191-203.	1.3	12
80	The coreâ€aldehyde 9â€oxononanoyl cholesterol increases the level of transformingÂgrowthÂfactorÂl²1â€specific receptors on promonocytic U937 cell membranes. Aging Cell, 2009, 8, 77-87.	3.0	8
81	Activation of Human Immunodeficiency Virus Long Terminal Repeat by Arachidonic Acid. Free Radical Biology and Medicine, 1997, 22, 195-199.	1.3	5
82	Modulation of cell signaling pathways by oxysterols in age-related human diseases. Free Radical Biology and Medicine, 2014, 75, S5.	1.3	5
83	Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radical Biology and Medicine, 2022, 181, 251-269.	1.3	5
84	Lipid peroxidation and inflammatory molecules as markers of coronary artery disease. Redox Report, 2007, 12, 81-85.	1.4	3
85	Cholesterol oxidation products and fibrogenesis. BioFactors, 2001, 15, 117-119.	2.6	1
86	4-Hydroxynonenal Signaling. , 2003, , 180-193.		1
87	Role of 27-hydroxycholesterol and 4-hydroxynonenal in atherosclerotic plaque vulnerability. Free Radical Biology and Medicine, 2016, 96, S36-S37.	1.3	1
88	Inflammation-Related Gene Expression by Lipid Oxidation Derived Products in the Progression of Atherosclerosis. Free Radical Biology and Medicine, 2010, 49, S9.	1.3	0
89	Oxidized Products of Cholesterol. Reviews in Food and Nutrition Toxicity, 2005, , .	0.0	0

90 Oxidative Damage and Fibrosclerosis in Various Tissues. , 1998, , 145-149.

0