Paulo N Matafome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. Journal of Physiology and Biochemistry, 2022, , 1.	3.0	10
2	Early postnatal exposure of rat pups to methylglyoxal induces oxidative stress, inflammation and dysmetabolism at adulthood. Journal of Developmental Origins of Health and Disease, 2022, 13, 617-625.	1.4	3
3	Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sciences, 2022, 298, 120526.	4.3	7
4	Mice with Type 2 Diabetes Present Significant Alterations in Their Tissue Biomechanical Properties and Histological Features. Biomedicines, 2022, 10, 57.	3.2	7
5	Improvement of Glycaemia and Endothelial Function by a New Low-Dose Curcuminoid in an Animal Model of Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 5652.	4.1	3
6	Lactation as a programming window for metabolic syndrome. European Journal of Clinical Investigation, 2021, 51, e13482.	3.4	32
7	Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome?. Nutrition Reviews, 2021, 79, 13-24.	5.8	4
8	Gut–adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome?. Obesity Reviews, 2021, 22, e13130.	6.5	7
9	Kinetics of radium-223 and its effects on survival, proliferation and DNA damage in lymph-node and bone metastatic prostate cancer cell lines. International Journal of Radiation Biology, 2021, 97, 714-726.	1.8	4
10	COVID-19 During Development: A Matter of Concern. Frontiers in Cell and Developmental Biology, 2021, 9, 659032.	3.7	4
11	Dietary Imbalance between Natural and Added Nutrient Sources Is Associated with Higher Fat Mass in Young Non-Obese Individuals. International Journal of Diabetology, 2021, 2, 95-106.	2.0	1
12	Sexâ€specific changes in peripheral metabolism in a model of chronic anxiety induced by prenatal stress. European Journal of Clinical Investigation, 2021, 51, e13639.	3.4	5
13	Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. European Journal of Clinical Investigation, 2021, 51, e13625.	3.4	29
14	Impairment of the angiogenic process may contribute to lower success rate of root canal treatments in diabetes mellitus. International Endodontic Journal, 2021, 54, 1687-1698.	5.0	4
15	Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose Tissue Deregulation. Antioxidants, 2021, 10, 1233.	5.1	6
16	Hypoglycaemic and Antioxidant Properties of Acrocomia aculeata (Jacq.) Lodd Ex Mart. Extract Are Associated with Better Vascular Function of Type 2 Diabetic Rats. Nutrients, 2021, 13, 2856.	4.1	9
17	Plasma activated media and direct exposition can selectively ablate retinoblastoma cells. Free Radical Biology and Medicine, 2021, 171, 302-313.	2.9	14
18	Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Molecular Metabolism, 2021, 51, 101241	6.5	35

#	Article	IF	CITATIONS
19	Oxymestane, a cytostatic steroid derivative of exemestane with greater antitumor activity in non-estrogen-dependent cell lines. Journal of Steroid Biochemistry and Molecular Biology, 2021, 212, 105950.	2.5	4
20	Peripheral Dopamine Directly Acts on Insulin-Sensitive Tissues to Regulate Insulin Signaling and Metabolic Function. Frontiers in Pharmacology, 2021, 12, 713418.	3.5	23
21	Distinct Impact of Natural Sugars from Fruit Juices and Added Sugars on Caloric Intake, Body Weight, Glycaemia, Oxidative Stress and Glycation in Diabetic Rats. Nutrients, 2021, 13, .	4.1	0
22	Distinct Impact of Natural Sugars from Fruit Juices and Added Sugars on Caloric Intake, Body Weight, Glycaemia, Oxidative Stress and Glycation in Diabetic Rats. Nutrients, 2021, 13, 2956.	4.1	9
23	Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Applied Materials Today, 2020, 18, 100501.	4.3	13
24	GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacological Research, 2020, 161, 105198.	7.1	20
25	Another Player in the Field: Involvement of Glycotoxins and Glycosative Stress in Insulin Secretion and Resistance. International Journal of Diabetology, 2020, 1, 24-36.	2.0	2
26	Epicardial adipose tissue (dys)function: A new player in heart disease?. Revista Portuguesa De Cardiologia, 2020, 39, 635-637.	0.5	1
27	A2 Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle. Frontiers in Endocrinology, 2020, 11, 262.	3.5	26
28	Curcumin derivatives for Type 2 Diabetes management and prevention of complications. Archives of Pharmacal Research, 2020, 43, 567-581.	6.3	22
29	A rat model of enhanced glycation mimics cardiac phenotypic components of human type 2 diabetes : A translational study using MRI. Journal of Diabetes and Its Complications, 2020, 34, 107554.	2.3	1
30	<i>Acrocomia aculeata</i> (Jacq.) Lodd. ex Mart. Leaves Increase SIRT1 Levels and Improve Stress Resistance. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	4.0	9
31	Epicardial adipose tissue (dys)function: A new player in heart disease?. Revista Portuguesa De Cardiologia (English Edition), 2020, 39, 635-637.	0.2	1
32	Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	10
33	Association between Adipokines and Biomarkers of Alzheimer's Disease: A Cross-Sectional Study. Journal of Alzheimer's Disease, 2019, 67, 725-735.	2.6	18
34	Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients, 2019, 11, 1197.	4.1	20
35	Effect of Sleeve Gastrectomy on Angiogenesis and Adipose Tissue Health in an Obese Animal Model of Type 2 Diabetes. Obesity Surgery, 2019, 29, 2942-2951.	2.1	10
36	Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Frontiers in Neuroendocrinology, 2019, 52, 1-11.	5.2	25

#	Article	IF	CITATIONS
37	Highâ€fat diet induces a neurometabolic state characterized by changes in glutamate and Nâ€acetylaspartate pools associated with early glucose intolerance: An in vivo multimodal MRI study. Journal of Magnetic Resonance Imaging, 2018, 48, 757-766.	3.4	15
38	Intestinal Epithelial Stem Cells: Distinct Behavior After Surgical Injury and Teduglutide Administration. Journal of Investigative Surgery, 2018, 31, 243-252.	1.3	2
39	MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovascular Research, 2018, 114, 53-64.	3.8	72
40	TISSULAR GROWTH FACTORS PROFILE AFTER TEDUGLUTIDE ADMINISTRATION ON AN ANIMAL MODEL OF INTESTINAL ANASTOMOSIS; PERFIL TISULAR DE FACTORES DE CRECIMIENTO POST-ADMINISTRACIÓN DE TEDUGLUTIDE EN UN MODELO ANIMAL DE ANASTOMOSIS INTESTINAL. Nutricion Hospitalaria, 2018, 35, 185-193.	0.3	1
41	Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer, 2018, 18, 29.	2.6	177
42	Effects of teduglutide on histological parameters of intestinal anastomotic healing. European Surgery - Acta Chirurgica Austriaca, 2017, 49, 218-227.	0.7	0
43	Function and Dysfunction of Adipose Tissue. Advances in Neurobiology, 2017, 19, 3-31.	1.8	31
44	The Role of Brain in Energy Balance. Advances in Neurobiology, 2017, 19, 33-48.	1.8	16
45	Neuroendocrinology of Adipose Tissue and Gut–Brain Axis. Advances in Neurobiology, 2017, 19, 49-70.	1.8	16
46	Teduglutide effects on gene regulation of fibrogenesis on an animal model of intestinal anastomosis. Journal of Surgical Research, 2017, 216, 87-98.	1.6	2
47	Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Scientific Reports, 2017, 7, 1698.	3.3	41
48	Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver. Diabetologia, 2017, 60, 158-168.	6.3	45
49	Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Medicinal Research Reviews, 2017, 37, 368-403.	10.5	67
50	Intestinal inflammatory and redox responses to the perioperative administration of teduglutide in rats. Acta Cirurgica Brasileira, 2017, 32, 648-661.	0.7	2
51	Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respiratory Physiology and Neurobiology, 2016, 228, 30-38.	1.6	35
52	Hyperresistinemia and metabolic dysregulation: a risky crosstalk in obese breast cancer. Endocrine, 2016, 53, 433-442.	2.3	46
53	Irisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk. Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	82
54	Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie, 2015, 112, 196-201.	2.6	37

#	Article	IF	CITATIONS
55	Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43Âin cardiomyocytes. Biochemical Journal, 2015, 467, 231-245.	3.7	74
56	Amelioration of Glycemic Control by Sleeve Gastrectomy and Gastric Bypass in a Lean Animal Model of Type 2 Diabetes: Restoration of Gut Hormone Profile. Obesity Surgery, 2015, 25, 7-18.	2.1	19
57	The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis. PLoS Computational Biology, 2015, 11, e1004436.	3.2	52
58	Glycation and Hypoxia: Two Key Factors for Adipose Tissue Dysfunction. Current Medicinal Chemistry, 2015, 22, 2417-2437.	2.4	14
59	A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Archives of Physiology and Biochemistry, 2014, 120, 1-11.	2.1	9
60	Glucagon secretion after metabolic surgery in diabetic rodents. Journal of Endocrinology, 2014, 223, 255-265.	2.6	15
61	Atorvastatin-mediated protection of the retina in a model of diabetes with hyperlipidemia. Canadian Journal of Physiology and Pharmacology, 2014, 92, 1037-1043.	1.4	11
62	Long-term globular adiponectin administration improves adipose tissue dysmetabolism in high-fat diet-fed Wistar rats. Archives of Physiology and Biochemistry, 2014, 120, 147-157.	2.1	14
63	Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. Journal of Bioenergetics and Biomembranes, 2014, 46, 347-355.	2.3	33
64	Advanced glycation end products and diabetic nephropathy: a comparative study using diabetic and normal rats with methylglyoxal-induced glycation. Journal of Physiology and Biochemistry, 2014, 70, 173-184.	3.0	30
65	Common mechanisms of dysfunctional adipose tissue and obesityâ€related cancers. Diabetes/Metabolism Research and Reviews, 2013, 29, 285-295.	4.0	34
66	Methylglyoxal, obesity, and diabetes. Endocrine, 2013, 43, 472-484.	2.3	137
67	Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1223-1230.	2.6	30
68	Methylglyoxal further impairs adipose tissue metabolism after partial decrease of blood supply. Archives of Physiology and Biochemistry, 2013, 119, 209-218.	2.1	21
69	Reduction of Methylglyoxal-Induced Glycation by Pyridoxamine Improves Adipose Tissue Microvascular Lesions. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	27
70	Pyridoxamine Reverts Methylglyoxalâ€induced Impairment of Survival Pathways During Heart Ischemia. Cardiovascular Therapeutics, 2013, 31, e79-85.	2.5	20
71	Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Archives of Physiology and Biochemistry, 2012, 118, 58-68.	2.1	45
72	Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 2012, 65, 497-506.	7.1	174

#	Article	IF	CITATIONS
73	Metformin restores endothelial function in aorta of diabetic rats. British Journal of Pharmacology, 2011, 163, 424-437.	5.4	144
74	Insulin and metformin may prevent renal injury in young type 2 diabetic Goto–Kakizaki rats. European Journal of Pharmacology, 2011, 653, 89-94.	3.5	26
75	Dietary restriction improves systemic and muscular oxidative stress in type 2 diabetic Goto–Kakizaki rats. Journal of Physiology and Biochemistry, 2011, 67, 613-619.	3.0	13
76	Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia. Diabetes/Metabolism Research and Reviews, 2011, 27, 54-62.	4.0	58
77	Methylglyoxalâ€induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Experimental Physiology, 2010, 95, 955-970.	2.0	61
78	Beneficial effects of dietary restriction in type 2 diabetic rats: the role of adipokines on inflammation and insulin resistance. British Journal of Nutrition, 2010, 104, 76-82.	2.3	10
79	A role for atorvastatin and insulin combination in protecting from liver injury in a model of type 2 diabetes with hyperlipidemia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 241-251.	3.0	22
80	Food Deprivation Promotes Oxidative Imbalance in Rat Brain. Journal of Food Science, 2009, 74, H8-H14.	3.1	10
81	Therapeutic association of atorvastatin and insulin in cardiac ischemia: Study in a model of type 2 diabetes with hyperlipidemia. Pharmacological Research, 2008, 58, 208-214.	7.1	11
82	Soybean oil treatment impairs glucose-stimulated insulin secretion and changes fatty acid composition of normal and diabetic islets. Acta Diabetologica, 2007, 44, 121-130.	2.5	20