Kee-Jeong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034054/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A band-gap-graded CZTSSe solar cell with 12.3% efficiency. Journal of Materials Chemistry A, 2016, 4, 10151-10158.	10.3	260
2	Effect of solid-H ₂ S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. Journal of Materials Chemistry A, 2019, 7, 25279-25289.	10.3	229
3	Effects of Na and MoS ₂ on Cu ₂ ZnSnS ₄ thinâ€film solar cell. Progress in Photovoltaics: Research and Applications, 2015, 23, 862-873.	8.1	108
4	Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area. Nature Communications, 2019, 10, 2959.	12.8	100
5	Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu ₂ ZnSnS ₄ solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1771-1784.	8.1	64
6	Growth and Device Characteristics of CZTSSe Thin-Film Solar Cells with 8.03% Efficiency. Chemistry of Materials, 2015, 27, 5180-5188.	6.7	63
7	Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors. Nano Energy, 2019, 59, 399-411.	16.0	61
8	The alterations of carrier separation in kesterite solar cells. Nano Energy, 2018, 52, 38-53.	16.0	42
9	Effect of Cu–Sn–Se Liquid Phase on Grain Growth and Efficiency of CZTSSe Solar Cells. Advanced Energy Materials, 2020, 10, 1903173.	19.5	37
10	Sodium Effects on the Diffusion, Phase, and Defect Characteristics of Kesterite Solar Cells and Flexible Cu ₂ ZnSn(S,Se) ₄ with Greater than 11% Efficiency. Advanced Functional Materials, 2021, 31, 2102238.	14.9	36
11	Controlled synthesis of (<i>hk</i> 1) preferentially oriented Sb ₂ Se ₃ rod arrays by co-evaporation for photovoltaic applications. Journal of Materials Chemistry A, 2019, 7, 25900-25907.	10.3	34
12	Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells. Nano Energy, 2017, 35, 52-61.	16.0	32
13	High photo-conversion efficiency Cu2ZnSn(S,Se)4 thin-film solar cells prepared by compound-precursors and metal-precursors. Solar Energy Materials and Solar Cells, 2018, 183, 129-136.	6.2	26
14	Approach to Transparent Photovoltaics Based on Wide Band Gap Sb ₂ S ₃ Absorber Layers and Optics-Based Device Optimization. ACS Applied Energy Materials, 2020, 3, 12644-12651.	5.1	25
15	Comparison of chalcopyrite and kesterite thin-film solar cells. Journal of Industrial and Engineering Chemistry, 2017, 45, 78-84.	5.8	23
16	Secondary Phase Formation Mechanism in the Mo-Back Contact Region during Sulfo-Selenization Using a Metal Precursor: Effect of Wettability between a Liquid Metal and Substrate on Secondary Phase Formation. ACS Applied Materials & Interfaces, 2019, 11, 23160-23167.	8.0	23
17	Carrier transport and surface potential over phase variations in the surface and bulk of highly efficient Cu ₂ ZnSn(S,Se) ₄ solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 382-392.	8.1	12
18	Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(Inx,Ga1â^'x)Se2 Solar Cells. Nanomaterials, 2021, 11, 2779.	4.1	10

KEE-JEONG YANG

#	Article	IF	CITATIONS
19	Self-Alignment of Bottom CZTSSe by Patterning of an Al2O3 Intermediate Layer. Nanomaterials, 2020, 10, 43.	4.1	7
20	Facile growth of a Sb ₂ Se ₃ nanorod array induced by a MoSe ₂ interlayer and its application in 3D p–n junction solar cells. Materials Advances, 2022, 3, 978-985.	5.4	7
21	The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading. Journal of Industrial and Engineering Chemistry, 2019, 76, 437-442.	5.8	5
22	CZTSSe Formation Mechanism Using a Cu/Zn/SnS Stacked Precursor: Origin of Triple CZTSSe Layer Formation. ACS Applied Materials & Interfaces, 2020, 12, 46037-46044.	8.0	4
23	Effect of Metal-Precursor Stacking Order on Volume-Defect Formation in CZTSSe Thin Film: Formation Mechanism of Blisters and Nanopores. ACS Applied Materials & amp; Interfaces, 2022, 14, 30649-30657.	8.0	4