List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4033998/publications.pdf Version: 2024-02-01

LINEELLAL

#	Article	IF	CITATIONS
1	Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 7936.	30.8	2,089
2	Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 2011, 21, 8038.	6.7	896
3	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	14.6	557
4	Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy and Environmental Science, 2012, 5, 9618.	30.8	376
5	One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon, 2011, 49, 3250-3257.	10.3	372
6	Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities. ACS Nano, 2012, 6, 5941-5951.	14.6	310
7	Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945-976.	12.2	263
8	Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy, 2014, 7, 151-160.	16.0	245
9	Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon, 2011, 49, 1362-1366.	10.3	218
10	Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2013, 2, 377-386.	16.0	200
11	Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. Journal of Materials Chemistry A, 2017, 5, 15423-15446.	10.3	184
12	Engineering the Electronic Structure of Graphene. Advanced Materials, 2012, 24, 4055-4069.	21.0	141
13	Electrochemically Synthesis of Nickel Cobalt Sulfide for Highâ€Performance Flexible Asymmetric Supercapacitors. Advanced Science, 2018, 5, 1700375.	11.2	141
14	2020 roadmap on two-dimensional materials for energy storage and conversion. Chinese Chemical Letters, 2019, 30, 2053-2064.	9.0	140
15	Aging mechanism of MoS2 nanosheets confined in N-doped mesoporous carbon spheres for sodium-ion batteries. Nano Energy, 2019, 62, 299-309.	16.0	119
16	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	14.6	116
17	Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy, 2013, 2, 726-732.	16.0	102
18	Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites. Nanoscale Research Letters, 2011, 6, 531.	5.7	95

#	Article	IF	CITATIONS
19	High-performance asymmetric pseudocapacitor cell based on cobalt hydroxide/graphene and polypyrrole/graphene electrodes. Journal of Power Sources, 2015, 275, 298-304.	7.8	87
20	Free-standing vertically-aligned nitrogen-doped carbon nanotube arrays/graphene as air-breathing electrodes for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 2488-2495.	10.3	83
21	Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy, 2012, 1, 723-731.	16.0	78
22	Solvothermal syntheses of hollow carbon microspheres modified with –NH2 and –OH groups in one-step process. Carbon, 2010, 48, 3145-3156.	10.3	77
23	Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118951.	20.2	76
24	V ₂ O ₅ embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23727-23736.	10.3	73
25	Co ₂ P@N,P-Codoped Carbon Nanofiber as a Free-Standing Air Electrode for Zn–Air Batteries: Synergy Effects of CoN _x Satellite Shells. ACS Applied Materials & Interfaces, 2019, 11, 10364-10372.	8.0	73
26	Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3, 134-143.	16.0	72
27	3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chemical Engineering Journal, 2019, 355, 752-759.	12.7	69
28	Nanoarrays: design, preparation and supercapacitor applications. RSC Advances, 2015, 5, 55856-55869.	3.6	68
29	Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chemical Engineering Journal, 2017, 313, 187-196.	12.7	68
30	Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam. Electrochemistry Communications, 2016, 64, 42-45.	4.7	65
31	Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Engineering Journal, 2018, 352, 972-995.	12.7	57
32	Pt-W C nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction. Nano Energy, 2013, 2, 28-39.	16.0	56
33	A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochimica Acta, 2017, 258, 1311-1319.	5.2	55
34	One-step coaxial electrodeposition of Co _{0.85} Se on CoNi ₂ S ₄ nanotube arrays for flexible solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15630-15639.	10.3	55
35	MoS ₂ architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 17534-17543.	10.3	51
36	A free-standing electrochemical sensor based on graphene foam-carbon nanotube composite coupled with gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 2017, 801, 129-134.	3.8	47

#	Article	IF	CITATIONS
37	Oneâ€Step Synthesis of Monodispersed Mesoporous Carbon Nanospheres for Highâ€Performance Flexible Quasiâ€Solidâ€State Microâ€Supercapacitors. Small, 2019, 15, e1903836.	10.0	45
38	Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.	7.1	44
39	High Electrochemical Performance of LiFePO4 Cathode Material via In-Situ Microwave Exfoliated Graphene Oxide. Electrochimica Acta, 2015, 151, 240-248.	5.2	42
40	One novel and universal method to prepare transition metal nitrides doped graphene anodes for Li-ion battery. Electrochimica Acta, 2014, 134, 28-34.	5.2	41
41	Tailored synthesis of Zn–N co-doped porous MoC nanosheets towards efficient hydrogen evolution. Nanoscale, 2019, 11, 1700-1709.	5.6	39
42	Highly active non-precious metal catalyst based on poly(vinylpyrrolidone)–wrapped carbon nanotubes complexed with iron–cobalt metal ions for oxygen reduction reaction. Journal of Power Sources, 2012, 214, 15-20.	7.8	37
43	Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. Journal of Materials Chemistry A, 2015, 3, 22043-22052.	10.3	36
44	Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene. RSC Advances, 2013, 3, 11601.	3.6	35
45	Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Materials Chemistry and Physics, 2020, 240, 122139.	4.0	33
46	Carbon Nanotube-Based Materials for Fuel Cell Applications. Australian Journal of Chemistry, 2012, 65, 1213.	0.9	31
47	Syntheses, Properties and Electrochemical Activity of Carbon Microtubes Modified with Amino Groups. Advanced Functional Materials, 2008, 18, 1809-1823.	14.9	29
48	Two-dimensional porous SiO2 nanomesh supported high dispersed Ni nanoparticles for CO methanation. Chemical Engineering Journal, 2017, 326, 774-780.	12.7	28
49	Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity. Carbon, 2011, 49, 1581-1587.	10.3	26
50	A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chemical Engineering Journal, 2019, 359, 1668-1676.	12.7	25
51	Catalysts confined inside CNTs derived from 2D metal–organic frameworks for electrolysis. Nanoscale, 2020, 12, 8969-8974.	5.6	25
52	A TiS ₂ /Celgard separator as an efficient polysulfide shuttling inhibitor for high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 24368-24375.	5.6	24
53	Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes. Electrochimica Acta, 2019, 306, 558-567.	5.2	21
54	N, P Coâ€doped Hierarchical Porous Graphene as a Metalâ€Free Bifunctional Air Cathode for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1811-1816.	3.4	19

#	Article	IF	CITATIONS
55	Durable Freestanding Hierarchical Porous Electrode for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 1505-1516.	5.1	18
56	Graphene-supported non-precious metal electrocatalysts for oxygen reduction reactions: the active center and catalytic mechanism. Journal of Materials Chemistry A, 2016, 4, 7148-7154.	10.3	17
57	Micro-supercapacitors based on oriented coordination polymer thin films for AC line-filtering. RSC Advances, 2018, 8, 30624-30628.	3.6	13
58	Synthesis of Mesoporous TiO2-B Nanobelts with Highly Crystalized Walls toward Efficient H2 Evolution. Nanomaterials, 2019, 9, 919.	4.1	10
59	Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. Journal of Colloid and Interface Science, 2021, 587, 581-589.	9.4	10
60	Structural engineering of V2O5 nanobelts for flexible supercapacitors. Materials Letters, 2022, 320, 132391.	2.6	10
61	Amorphous carbon interweaved mesoporous all-carbon electrode for wide-temperature range supercapacitors. Electrochimica Acta, 2022, 424, 140622.	5.2	7
62	Tailoring the Electrode Interface with Enhanced Electron Transfer for High-Rate Lithium-Ion Battery	3.7	3

Anodes. Industrial & amp; Engineering Chemistry Research, 2016, 55, 6643-6648. 62