
Lei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4033924/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rational Design of Covalent Heptazine Frameworks with Spatially Separated Redox Centers for Highâ€Efficiency Photocatalytic Hydrogen Peroxide Production. Advanced Materials, 2022, 34, e2107480.	11.1	119
2	Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric or Asymmetric "Twoâ€inâ€One―Type Monomers. Advanced Science, 2022, 9, e2105517.	5.6	12
3	Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chemistry of Materials, 2022, 34, 4259-4273.	3.2	60
4	Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Advanced Materials, 2022, 34, e2110266.	11.1	136
5	A Transparent, Highâ€Performance, and Stable Sb ₂ S ₃ Photoanode Enabled by Heterojunction Engineering with Conjugated Polycarbazole Frameworks for Unbiased Photoelectrochemical Overall Water Splitting Devices. Advanced Materials, 2022, 34, e2200723.	11.1	30
6	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	3.6	35
7	Forming electron traps deactivates self-assembled crystalline organic nanosheets toward photocatalytic overall water splitting. Science Bulletin, 2021, 66, 265-274.	4.3	18
8	Stable Unbiased Photoâ€Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. Advanced Materials, 2021, 33, e2008264.	11.1	74
9	Reversing Immunosuppression in Hypoxic and Immuneâ€Cold Tumors with Ultrathin Oxygen Self‣upplementing Polymer Nanosheets under Near Infrared Light Irradiation. Advanced Functional Materials, 2021, 31, 2100354.	7.8	25
10	Fully Conjugated Ladder Polymers as <scp>Metalâ€Free</scp> Photocatalysts for <scp>Visibleâ€Lightâ€Driven</scp> Water Oxidation. Chinese Journal of Chemistry, 2021, 39, 1079-1084.	2.6	10
11	Selective CO ₂ â€toâ€CH ₄ Photoconversion in Aqueous Solutions Catalyzed by Atomically Dispersed Copper Sites Anchored on Ultrathin Graphdiyne Oxide Nanosheets. Solar Rrl, 2021, 5, 2100200.	3.1	13
12	PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3934.	5.8	111
13	Ionic Covalentâ€Organic Framework Nanozyme as Effective Cascade Catalyst against Bacterial Wound Infection. Small, 2021, 17, e2100756.	5.2	55
14	Enhanced photocatalytic H2/H2O2 production and tetracycline degradation performance of CdSe quantum dots supported on K, P, N-co-doped hollow carbon polyhedrons. Chemical Engineering Journal, 2021, 426, 130808.	6.6	22
15	A bridging coordination of urea tailoring metal hydroxides oxygen evolution catalysts promotes stable solar water splitting. Chemical Engineering Journal, 2021, 426, 131062.	6.6	21
16	Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused π-conjugated microporous polymer for light-driven benzyl alcohol oxidation. Chinese Chemical Letters, 2020, 31, 231-234.	4.8	19
17	Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metalâ€Free Photocatalysts for Hydrogen Peroxide Production: A New Twoâ€Electron Water Oxidation Pathway. Advanced Materials, 2020, 32, e1904433.	11.1	225
18	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 16902-16909.	7.2	293

Lei Wang

#	Article	IF	CITATIONS
19	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 17050-17057.	1.6	66
20	Thermally assisted photocatalytic conversion of CO ₂ –H ₂ O to C ₂ H ₄ over carbon doped In ₂ S ₃ nanosheets. Journal of Materials Chemistry A, 2020, 8, 10175-10179.	5.2	61
21	A Simple Molecular Design Strategy for Two-Dimensional Covalent Organic Framework Capable of Visible-Light-Driven Water Splitting. Journal of the American Chemical Society, 2020, 142, 4508-4516.	6.6	207
22	Facile preparation of novel CdxZn2-xGeO4 solid solutions with efficient photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2020, 830, 154391.	2.8	7
23	Rapid metal-free synthesis of pyridyl-functionalized conjugated microporous polymers for visible-light-driven water splitting. Polymer Chemistry, 2020, 11, 3393-3397.	1.9	31
24	Unraveling the Photocatalytic Water Dissociation Pathways on Twoâ€Đimensional Conjugated Polymers. ChemCatChem, 2019, 11, 6236-6243.	1.8	8
25	Advanced Ultrathin RuPdM (M = Ni, Co, Fe) Nanosheets Electrocatalyst Boosts Hydrogen Evolution. ACS Central Science, 2019, 5, 1991-1997.	5.3	78
26	Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese Journal of Polymer Science (English Edition), 2019, 37, 101-114.	2.0	12
27	Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catalysis, 2018, 8, 4735-4750.	5.5	119
28	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Zâ€ S cheme Overall Water Splitting. Angewandte Chemie, 2018, 130, 3512-3516.	1.6	64
29	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Zâ€Scheme Overall Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 3454-3458.	7.2	248
30	Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO ₄ Photoanodes for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 2248-2252.	7.2	558
31	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie - International Edition, 2018, 57, 16447-16451.	7.2	262
32	2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Advanced Materials, 2018, 30, e1801955.	11.1	211
33	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126
34	Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Advanced Materials, 2017, 29, 1702428.	11.1	302
35	Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. ChemNanoMat, 2017, 3, 22-26.	1.5	27
36	Ordered Mesoporous Black TiO ₂ as Highly Efficient Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2014, 136, 9280-9283.	6.6	878